
 

 

M  A  S  T  E  R’ S     T  H  E  S  I  S  

 
Title: 

 An Agile Collaboration Framework for 
 Workstream-based Software Development 
  
 

  
 
 
 
 

Study Program: 
Intelligent Enterprise Management, PO 2020 

 
 
 
 

Submitted by: 
Mathias Kemeter 

 
 
 
 
 
 

Supervisor & First Reviewer: Second Reviewer: 
Prof. Dr. Christine Arend-Fuchs Prof. Dr. Michael Jacob 

 
 
 
 

Submission Date: 
17 July 2024 

 

F A C U L T Y   O F   B U S I N E S S   S T U D I E S 



Table of Contents II 

Mathias Kemeter 

Table of Contents 
Table of Figures ............................................................................................. IV 

1. Introduction .............................................................................................. 1 

1.1 Initial Situation and Problem Statement ..................................................... 1 

1.2 Objectives and Approach ........................................................................... 2 

1.3 Structure of the Thesis ............................................................................... 3 

2. Fundamentals of Agile Frameworks ...................................................... 4 

2.1 Introduction to Agile and Lean ................................................................... 5 

2.1.1 Principles of Lean Thinking ..................................................... 5 

2.1.2 Manifesto for Agile Software Development ............................. 7 

2.1.3 Manifesto for Software Craftsmanship .................................... 9 

2.2 Overview of Agile Frameworks ................................................................ 12 

2.2.1 Scrum .................................................................................... 12 

2.2.2 Kanban .................................................................................. 16 

2.2.3 Scrumban .............................................................................. 20 

2.2.4 Large-scale Agile Frameworks ............................................. 21 

2.3 Criticism and Practicability ....................................................................... 24 

2.4 New Work in the Context of Agile ............................................................ 29 

3. Proposal for a Workstream-based Development Framework ............ 33 

3.1 Motivation ................................................................................................. 33 

3.2 Overview of Structures and Processes .................................................... 35 

3.2.1 Definition of Planning and Work Units .................................. 36 

3.2.2 Layers of Planning and Execution ........................................ 37 

3.2.3 Roles and Responsibilities .................................................... 39 

3.2.4 Meeting Structure, Cadence, and Duration ........................... 42 

3.2.5 Guardrails for Focused Delivery ........................................... 46 

3.3 Best Practices and Recommendations .................................................... 50 

3.3.1 Integration of Feedback Loops ............................................. 51 

3.3.2 Team-internal Craftsman Swaps .......................................... 51 

3.3.3 Product Focus and Continuous Flow .................................... 52 



Table of Contents III 

Mathias Kemeter 

3.4 Summary of Proposal .............................................................................. 53 

4. Practical Implementation and Evaluation ............................................ 54 

4.1 Iterative Conceptualization ....................................................................... 55 

4.2 Change Management and People Transition .......................................... 58 

4.3 Use of Collaboration Technology ............................................................. 62 

4.3.1 Direct Communication ........................................................... 63 

4.3.2 Whiteboarding ....................................................................... 65 

4.3.3 Task Management ................................................................ 66 

4.3.4 Scheduling ............................................................................ 68 

4.4 Analysis of Outcomes .............................................................................. 69 

4.4.1 Successes During Implementation ....................................... 70 

4.4.2 Challenges During Implementation ....................................... 72 

5. Discussion .............................................................................................. 75 

5.1 Comparison with Existing Agile Frameworks ........................................... 75 

5.2 Limitations and Areas for Future Improvement ........................................ 78 

6. Conclusion ............................................................................................. 80 

Bibliography .................................................................................................. VII 

Declaration of Authenticity ......................................................................... XIII 



Table of Figures IV 

Mathias Kemeter 

Table of Figures 
Figure 1: Agile adoption over time (n=475 firms with some adoption of agile 

methods in 2014) ............................................................................................. 4 

Figure 2: Westrum's three cultures model and associated characteristics for 

organizations ................................................................................................... 6 

Figure 3: The traditional V-model of software development .................................. 7 

Figure 4: Iterative approach to agile software development .................................. 8 

Figure 5: Values of Software Craftmanship and Agile compared ........................ 11 

Figure 6: Rugby players in a scrummage (also known as scrum) ....................... 12 

Figure 7: Scrum roles, events, and artifacts ........................................................ 13 

Figure 8: Visualization of work items and the main Kanban principles in a Kanban 

board ............................................................................................................. 17 

Figure 9: Visualizing measurements of a Kanban system (CFD, Cycle Time, Defect 

Rate, Blocked Items) ..................................................................................... 19 

Figure 10: The full complexity of SAFe in a nutshell ............................................ 23 

Figure 11: Ideal conditions for applying agile frameworks compared to perceived 

enterprise realities ......................................................................................... 25 

Figure 12: Duration of re-occurring Scrum events for a 1-month sprint ............... 27 

Figure 13: Relative distribution of meeting and non-meeting times in a typical 

Scrum ............................................................................................................ 28 

Figure 14: The five principles of the New Work Charter ...................................... 30 

Figure 15: Percentual adoption of New Work measures in companies in 2022 .. 31 

Figure 16: Vibrant scene of craftsmen collectively building a barn ...................... 34 

Figure 17: Example of ten developers working in a matrix of three technical 

components and three workstreams ............................................................. 36 

Figure 18: Planning layers and planning cadence of WDF .................................. 39 



Table of Figures V 

Mathias Kemeter 

Figure 19: Meeting cadence and duration of WDF .............................................. 42 

Figure 20: Exemplary bi-weekly meeting schedule for WDF ............................... 45 

Figure 21: The cost of task switching for software developers ............................ 48 

Figure 22: Comparing lines of code (millions) between SAP HANA and large open-

source software projects as of May 2022 ...................................................... 54 

Figure 23: Team ideation on shortcomings of the historical development process 

(actual screenshot) ........................................................................................ 56 

Figure 24: Result of whiteboarding iteration for process improvement after initial 

framework adoption (actual screenshot) ....................................................... 58 

Figure 25: Humorous internet meme of workers prioritizing actual work over 

process change activities .............................................................................. 59 

Figure 26: Three steps to gradually transition from Scrum to WDF ..................... 62 

Figure 27: Digital whiteboards like Mural facilitate vibrant virtual team discussions

 ...................................................................................................................... 65 

Figure 28: Kanban board incorporating process steps, workstreams, and technical 

components ................................................................................................... 67 

Figure 29: Schematic representation of the default planning perspective in Jira . 68 

Figure 30: Results of the whiteboarding session on an employee survey filtered for 

comments that may refer to WDF (actual screenshot) .................................. 70 

Figure 31: Relative distribution of meeting and non-meeting times for WDF ....... 77 

Figure 32: Business Model Canvas, assuming WDF as a product ...................... 81 



Introduction 1 

Mathias Kemeter 

1. Introduction 
The number of software developers globally is expected to reach almost 29 million 

people by the end of 2024.1 Due to modern version control systems and remote 

collaboration software, these knowledge workers can operate with a high degree 

of autonomy. Software development methodologies are used by teams in software 

companies to ensure, despite the individual autonomy, that the contribution of each 

developer is valuable to the sold product and, from a management perspective, 

results in an adequate return on investment. 

Agile software development methodologies have recently become the predominant 

working model, as the associated process frameworks promise a good balance 

between maintaining the knowledge workers’ autonomy and efficiently reaching 

commercial goals. As methodological requirements differ from team to team and 

company to company, businesses have a broad choice of agile frameworks to fulfill 

their requirements. Instead of implementing existing frameworks, teams and com-

panies may choose to craft a custom process model for addressing their specific 

needs. 

This thesis introduces an agile development framework that addresses the partic-

ular needs of software development teams within large organizations. These teams 

are often responsible for a wide variety of topics while working within tight margin 

expectations. 

1.1 Initial Situation and Problem Statement 
Agile software development teams in large organizations face challenges directly 

or indirectly caused by margin and efficiency expectations, which create tension 

with the desired agility, and existing agile frameworks in particular. Therefore, the 

focus of this document is on software development teams and organizations that, 

in addition to customer expectations of their products, are affected by the following 

conditions: 

 

1 (Statista, 2024) 



Introduction 2 

Mathias Kemeter 

• Profitability expectations drive the expansion of development teams due to 

reduced management layers and the diversification of development topics. 

• A competitive job market increases attrition and makes it difficult to main-

tain stable teams with balanced staffing according to business priorities. 

• Employees in the New Work era2 demand a high degree of autonomy and 

expect companies to be people-centric. 

This master’s thesis discusses the problem of how agile software development 

teams can integrate and tackle the above-mentioned challenges into their devel-

opment process while ensuring high work throughput and keeping developer sat-

isfaction at a high level.  

1.2 Objectives and Approach 
Based on the principles of agile software development and using elements of ex-

isting agile frameworks, this thesis proposes an agile, lean development framework 

that addresses the problem statement presented in Section 1.1. 

To ensure developer satisfaction and autonomy, this framework has been itera-

tively crafted by a 20-strong development team using previous experience and el-

ements of Design Thinking.3 The resulting framework addresses the following core 

objectives: 

• Implement a unified process for large teams to improve management re-

porting and efficiency. 

• Enable the team to be responsible for an increasing variety of development 

topics. 

• Keep the staffing balanced across teams while avoiding disruptive out-

placement (so-called “lift and shift”) of developers. 

• Make best use of available knowledge and resources by leveraging syner-

gies between teams. 

 

2 see Section 2.4 
3 see (Dam & Siang, 2024) 



Introduction 3 

Mathias Kemeter 

• Increase developer autonomy and satisfaction according to New Work prin-

ciples. 

In addition, this thesis discusses the success of the new framework based on feed-

back from the development team after running the framework for more than six 

months, which will allow a realistic portrayal of the approach while fostering trans-

parency regarding its limitations and inherent weaknesses.  

1.3 Structure of the Thesis  
Chapter 2 introduces the fundamentals of agile and lean methodologies in Section 

2.1 before summarizing the relevant existing agile frameworks in Section 2.2. The 

chapter concludes with a critical perspective on these frameworks and a consider-

ation of the principles of New Work in the context of agile software development. 

Based on the fundamentals presented in Chapter 2, Chapter 3 proposes a frame-

work for workstream-based software development. After highlighting the necessity 

for this proposal in Section 3.1, the structures and processes related to it are listed 

in Section 3.2, along with additional best practices and recommendations in Sec-

tion 3.3. The chapter concludes with a summary of the core proposal. 

In reverse chronological order, Chapter 4 presents the journey from the initial situ-

ation to the proposal outlined in Chapter 3. As the proposed framework has been 

conceptualized and prototyped simultaneously with an iterative approach, Chapter 

4 covers the design phase of the framework in Section 4.1, the change manage-

ment and people transition aspects in Section 4.2, the implementation support of-

fered by collaboration technology in Section 4.3, and the evaluation of outcomes 

after running the proposed framework for more than six months in Section 4.4. 

Chapter 5 discusses how the new development framework compares to and differ-

entiates from existing frameworks. The second half of the chapter highlights the 

study’s limitations and outlines the potential for future research and improvement. 

Chapter 6 concludes this thesis by briefly summarizing its main outcomes and dis-

cussion points and transferring the major findings into a Business Model Canvas. 

 



Fundamentals of Agile Frameworks 4 

Mathias Kemeter 

2. Fundamentals of Agile Frameworks 
This chapter provides a fundamental overview of agile frameworks for software 

development. In the last two decades, software development teams have moved 

away from traditional waterfall methods to frameworks such as Scrum or Kanban, 

with a steep increase in adoption since 2009, as depicted in Figure 1. Based on a 

survey involving 601 development and IT professionals conducted by Hewlett 

Packard, agile methodologies in software development can be considered the 

“new norm.”4 

 

Figure 1: Agile adoption over time (n=475 firms with some adoption of agile methods in 
2014)5 

The main concepts of agile methods are presented in Sections 2.1 and 2.2. A brief 

practical evaluation of the discussed approaches, also from the perspective of the 

New Work movement, concludes the chapter in Section 2.3 and 2.4. Although the 

methods outlined here are widely adopted in the software development industry, 

most are based on observations and experience rather than scientific studies. This 

 

4 see (Hewlett Packard Enterprise, 2017, p. 1) 
5 taken from (Hewlett Packard Enterprise, 2017, p. 2) 



Fundamentals of Agile Frameworks 5 

Mathias Kemeter 

point also applies to the most popular framework, Scrum, which is “founded on 

empiricism and lean thinking,”6 as the official Scrum Guide states. 

2.1 Introduction to Agile and Lean 
Agile and Lean, as in Agile Thinking or Lean Management, are often referred to 

when discussing agile practices for software development. While there is no pre-

cise definition of the terms, some underlying principles are commonly implied when 

using them. 

2.1.1 Principles of Lean Thinking 

The core idea of Lean Thinking (or Lean) is continuously eliminating waste,7 which, 

in the context of software development and beyond, implies activities that do not 

add value to the product. The concepts applied to software development today 

were based initially on lean manufacturing and the associated one-piece flow, 

which originated in Toyota’s production system in the 1950s and 1960s.8 

In 1996, Womack and Jones defined Lean Thinking based on five principles, which 

are often referred to in subsequent literature: 

“Lean Thinking is the antidote to waste. There are (5) Lean Principles:  

• Specify Value. Value can be defined only by the ultimate customer. 

[...]  

• Identify the Value Stream. The Value Stream is all the actions 

needed to bring a product to the customer. […]  

• Flow. Make the value-creating steps flow. [...] 

• Pull. Let the customer pull the product from you. Sell one. Make one. 

• Pursue Perfection. There is no end to the process of reducing time, 

space, cost, and mistakes. 

 

6 (Schwaber & Sutherland, 2020, p. 4) 
7 also known as “Kaizen” 
8 see (Liker, 2003) 



Fundamentals of Agile Frameworks 6 

Mathias Kemeter 

Lean is doing more with less. Use the least amount of effort, energy, equip-

ment, time, facility space, materials, and capital—while giving customers ex-

actly what they want.”9 

Starting from its definition as a set of principles, it becomes evident that Lean 

Thinking is not a process that can be standardized and replicated.10 Instead, it can 

be seen as a foundational mindset facilitated by certain lean practices. 

From a software development perspective, continuous integration and continuous 

delivery (CI/CD) are preconditions to applying lean principles on an organizational 

level as they stabilize flow and help the organization move from large-batch devel-

opment toward smaller increments, like a one-piece flow in manufacturing.11  

Achieving the state of continuous delivery requires “a culture in which interactions 

between development, operations, and information security teams are generally a 

win-win.”12 This culture is considered a generative company culture according to 

sociologist Ron Westrum’s three cultures model,13 which is depicted in Figure 2. 

Pathological (power-oriented) Bureaucratic (rule-oriented) Generative (performance-oriented) 

Low cooperation Modest cooperation High cooperation 

Messengers shot Messengers neglected Messengers trained 

Responsibilities shirked Narrow responsibilities Risks are shared 

Bridging discouraged Bridging tolerated Bridging encouraged 

Failure leads to scapegoating Failure leads to justice Failure leads to inquiry 

Novelty crushed Novelty leads to problems Novelty implemented 

Figure 2: Westrum's three cultures model and associated characteristics for organizations14 

In conclusion, the technical possibility of CI/CD and a generative organizational 

culture are catalysts for establishing the 5 Lean Thinking principles within a soft-

ware company. 

 

9 (Womack & Jones, 2003) 
10 see (Ladas, 2008, p. 13) 
11 see (Humble, et al., 2020, p. 168) 
12 (Humble, et al., 2020, p. 168) 
13 see (Westrum, 2005, pp. 22-24) 
14 own representation based on (Humble, et al., 2020, p. 10) 



Fundamentals of Agile Frameworks 7 

Mathias Kemeter 

2.1.2 Manifesto for Agile Software Development 

Traditionally, software development processes followed the so-called Waterfall 

Methodology, or the closely related V-model. Figure 3 shows the approach of de-

tailing software requirements during a dedicated verification phase. After conclud-

ing verification, the software is coded as specified and subsequently tested during 

the validation phase. 

 

Figure 3: The traditional V-model of software development15 

Each step in the traditional model needs to be finalized before linearly starting with 

the next step so that there is only a limited feedback loop and missing flexibility to 

react to changing requirements. Traditional models are still practiced in highly reg-

ulated domains, such as health care, as they are deemed beneficial for controlling 

risk and quality. 

 

15 taken from (Oppermann, 2023) 



Fundamentals of Agile Frameworks 8 

Mathias Kemeter 

The major disadvantage of the traditional models is their lack of agility to react to 

changing conditions in a VUCA16 environment and the closely related risk of deliv-

ering a product without relevance and value. This situation has led to an acceler-

ated movement toward agile software development, a paradigm that embraces 

change and uncertainty in the software development process. Agile methods aim 

to deliver value to customers faster and more frequently while ensuring high quality 

and continuous improvement.  

 

Figure 4: Iterative approach to agile software development17 

After agile methodologies gained popularity in the 1990s, a group of agile practi-

tioners agreed in 2001 on a manifesto, which today is the foundation for agile soft-

ware development and related frameworks: 

“We are uncovering better ways of developing software by doing it and help-

ing others do it. Through this work we have come to value: 

• Individuals and interactions over processes and tools 

• Working software over comprehensive documentation 

• Customer collaboration over contract negotiation 

• Responding to change over following a plan 

 

16 VUCA = volatile, uncertain, complex, and ambiguous conditions 
17 taken from (Digital Template Market, 2020) 



Fundamentals of Agile Frameworks 9 

Mathias Kemeter 

That is, while there is value in the items on the right, we value the items on 

the left more.”18 

There are many parallels between the Agile Manifesto and lean approaches, which 

explains their frequent co-existence in modern software development. The primary 

parallels include the following: 

• Steady flow and small batch sizes are logical prerequisites for being able 

to respond to change. 

• The target to create value with working software aligns with the lean princi-

ple of measuring value only based on the customer. 

• Both paradigms put individuals at their core. While this is an explicit part of 

the Agile Manifesto, it is also implied by the required organizational culture 

for implementing Lean Thinking. 

Software development teams may work in a lean and agile manner simultaneously, 

and popular development frameworks such as Scrum or SAFe have been de-

signed with both aspects in mind. This combination is sometimes referred to as 

lean-agile mindset.19 However, it is worth noting that both paradigms have slightly 

different views on the same process: Lean focuses on doing more with less, which 

usually appeals to a management view, while Agile focuses on delivering customer 

satisfaction, which usually appeals to developers.  

2.1.3 Manifesto for Software Craftsmanship 

Software Craftsmanship is a movement that focuses more on the developer’s view 

of the software development process und builds on the agile paradigm. In 2008, 

Robert C. Martin,20 signatory of the Agile Manifesto, proposed adding a fifth value 

to the manifesto: “Craftsmanship over Execution” 21 

 

18 (Beck, et al., 2001) 
19 (Scaled Agile, Inc., 2024) 
20 widely known as “Uncle Bob” in the software development community 
21 see (Bria, 2008) 



Fundamentals of Agile Frameworks 10 

Mathias Kemeter 

Martin intended to highlight the simultaneous importance of delivering the expected 

outcome (eventually working code), adhering to good craftsmanship, and deliver-

ing the outcome with an appropriate inner quality. In an earlier and more dramatic 

version, he proposed the value of “Craftsmanship over Crap”, which made his in-

tent even more explicit.22 

Following Martin’s and others’ initiatives, a group of software professionals created 

the Manifesto for Software Craftsmanship, which currently has more than 35,000 

signatories. The declaration includes the following: 

“As aspiring Software Craftsmen we are raising the bar of professional soft-

ware development by practicing it and helping others learn the craft. Through 

this work we have come to value: 

• Not only working software, but also well-crafted software 

• Not only responding to change, but also steadily adding value 

• Not only individuals and interactions, but also a community of pro-
fessionals 

• Not only customer collaboration, but also productive partnerships 

That is, in pursuit of the items on the left we have found the items on the right 

to be indispensable.”23 

The Software Craftsmanship Manifesto has a clear connection to the Agile Mani-

festo while enhancing and challenging it. The direct comparison of values in Figure 

5 makes the emphasis on quality and craftsmanship evident. 

 

 

22 see (Bria, 2008) 
23 (the undersigned, 2009). This statement may be freely copied in any form, but only in its entirety 

through this notice. 



Fundamentals of Agile Frameworks 11 

Mathias Kemeter 

Software Craftsmanship Agile 

Well-crafted software Working software 

Steadily adding value Responding to change 

Community of professionals Individuals and interactions 

Productive partnership Customer collaboration 

Figure 5: Values of Software Craftmanship and Agile compared 

Some of the practices of Software Craftsmanship are exclusive to this concept. 

Building on the comparison of software development as a craft rather than an en-

gineering discipline, practices such as the Craftsman Swaps have been estab-

lished among practitioners.  

The Craftsman Swaps are inspired by the European late-medieval practice of Jour-

neyman Tours,24 where craftsman apprentices would work and travel across the 

nation to gain practical experience and develop new skills inspired by foreign 

places and work practices. The Software Craftsmanship movement transferred this 

concept to software development by establishing time-boxed employee exchanges 

between two companies: Two developers would change their jobs for a particular 

time to gain new experience and transfer knowledge and improvement opportuni-

ties to their original company.25 The practical example of the companies 8th Light 

and Obtiva, which have been early adopters of the practice, shows that given the 

right contractual boundary, the swaps are even possible in a competitive situa-

tion.26 

Some elements of Software Craftmanship conflict with lean principles—for exam-

ple, activities such as the removal of technical debt are encouraged by the values 

of Software Craftsmanship but could be considered wasteful from a lean perspec-

tive. However, the idea of Software Craftsmanship can be applied to the frame-

works introduced in Section 2.2.27 

 

24 also denoted by the German term “Wanderjahre” or “Walz” 
25 see (Rauch, 2016) 
26 see (Wong, 2009) 
27 see (Lucena & Tizzei, 2016, p. 9) 



Fundamentals of Agile Frameworks 12 

Mathias Kemeter 

2.2 Overview of Agile Frameworks 
This section provides an overview of commonly used frameworks and methodolo-

gies, namely Scrum and Kanban, to introduce agile principles to software develop-

ment teams. After presenting the basics of Scrum and Kanban, existing ap-

proaches for scaling agile methodologies on an organizational level are briefly de-

scribed. 

2.2.1 Scrum 

The term scrum is borrowed from rugby football, where it describes a situation in 

which the players gather in a dense pack to restart the game after an incident.28 

The analogy with team sports highlights the ambition of the Scrum framework: 

Software development is team sports, and the team needs to align tightly and chal-

lenge each other to get the ball back into the game and achieve meaningful results. 

 

Figure 6: Rugby players in a scrummage (also known as scrum)29 

Looking at the Scrum framework30 in a business context, it commonly gets de-

scribed as “a lightweight framework that helps people, teams and organizations 

generate value through adaptive solutions for complex problems.”31 The goal is to 

 

28 (World Rugby Limited, 2024) 
29 taken from (Quino Al, 2017) 
30 abbreviated: Scrum 
31 (Schwaber & Sutherland, 2020, p. 3) 



Fundamentals of Agile Frameworks 13 

Mathias Kemeter 

“optimize predictability and to control risk”32 within software development. Although 

Scrum is not restricted to the domain of software development, it is most frequently 

used in this context. The fundamentals of Scrum were initially described in a short 

document by Ken Schwaber and Jeff Sutherland,33 which serves as a single source 

of truth for ample secondary literature on how to adopt the framework in real-world 

software development. Thus, Scrum is deemed easy to adopt but hard to master. 

Figure 7 provides an overview of Scrum’s most important roles, events, and arti-

facts, which will be explained in the following subsections. 

 

Figure 7: Scrum roles, events, and artifacts34 

2.2.1.1 Roles 

A Scrum team is a non-hierarchical team of empowered individuals. Ideally, the 

team should consist of ten people or less35 and be split into three personas: De-

velopers, Product Owner, and Scrum Master. 

Developers are professionals and craftsmen, who create the product. They plan 

and coordinate sprint activities so that a defined increment is delivered at the end 

of the sprint according to previously defined quality and functional criteria.36 

 

32 (Schwaber & Sutherland, 2020, p. 3) 
33 (Schwaber & Sutherland, 2020) 
34 taken from (Scrum.org, 2024) 
35 see (Schwaber & Sutherland, 2020, p. 5) 
36 see (Schwaber & Sutherland, 2020, p. 5) 



Fundamentals of Agile Frameworks 14 

Mathias Kemeter 

The Product Owner is accountable for delivering a product with maximum value to 

its customers and stakeholders. To achieve this, the Product Owner manages the 

product backlog so that the prioritization of product deliverables is in harmony with 

the product goal. The Product Owner ensures the team members understand the 

product backlog and its corresponding goal. This role is the single point of contact 

for stakeholders and is responsible for mapping their technical and non-technical 

requirements to the product backlog.37 

The most significant role, the Scrum Master, is typically described as a servant 

leader who maximizes the team’s effectiveness by removing obstacles that may 

prevent the team from reaching their goal. This role also ensures that every indi-

vidual understands and follows the elements of Scrum.38 

2.2.1.2 Events 

Scrum is organized in cycles called sprints—another sports analogy. Sprints have 

a fixed duration of between one and four weeks, and the next Sprint starts imme-

diately after the previous one has finished.39 

Each sprint has a sprint goal, which the team (including the Product Owner) has 

agreed upon during the sprint planning. The sprint planning event is conducted 

before each sprint and is intended to define the work packages that need to be 

done to achieve the sprint goal.40 

During the sprint, the team (excluding the Product Owner) will meet in Daily Scrum 

meetings, which should not exceed 15 minutes. The goal is to ensure the team is 

still working towards the sprint goal. The team may adjust planning or remove ob-

stacles to ensure coherence with the sprint goal.41 

At the closing of each sprint, and before planning the next sprint, the team conducts 

a sprint review and sprint retrospective. The sprint review is the Scrum event with 

the largest audience, as it may also include customers and stakeholders. The team 

 

37 see (Schwaber & Sutherland, 2020, pp. 5-6) 
38 see (Schwaber & Sutherland, 2020, pp. 6-7) 
39 see (Schwaber & Sutherland, 2020, p. 7) 
40 see (Schwaber & Sutherland, 2020, p. 8) 
41 see (Schwaber & Sutherland, 2020, p. 9) 



Fundamentals of Agile Frameworks 15 

Mathias Kemeter 

presents the outcome of the recent sprint to this audience and gathers their feed-

back, which may be fed back to the backlog by the Product Owner. On the contrary, 

the sprint retrospective is the most sensitive of all Scrum events. The team uses 

this meeting to discuss what went well during the last sprint and where there is 

potential for improvement. This includes technical as well as individual and collab-

orative aspects.42 

2.2.1.3 Artifacts 

The Scrum Guide describes three artifacts that ensure transparency over the 

planned work and the delivered value of the development team: the product back-

log, the spring backlog, and the increment. Each artifact is bound to a commitment, 

which sets the scale for measuring progress. 

The product backlog is a sorted list of work items, also called backlog items or user 

stories, that are required to reach the product goal. The latter is a commitment 

agreed upon within the Scrum team. The product backlog is a living document that 

undergoes a continuous refinement process.43 

During the sprint planning, the Scrum team agrees on a sprint goal and assembles 

the sprint backlog with the work items required to reach this goal. At this stage, 

each selected backlog item needs to be in an actionable state. It needs to contain 

a sufficient level of detail and knowledge to be delivered within the next sprint, and 

the team needs to agree on an effort estimation for the work to be done.44 

As soon as a backlog item meets the definition of done, it is considered an incre-

ment. An increment must be usable—that is, it must represent a ready-to-consume 

feature rather than work effort within the sprint. The measurable output of a sprint 

is the sum of the delivered increments.45 

 

42 see (Schwaber & Sutherland, 2020, pp. 9-10) 
43 see (Schwaber & Sutherland, 2020, pp. 10-11) 
44 see (Schwaber & Sutherland, 2020, p. 11) 
45 see (Schwaber & Sutherland, 2020, pp. 11-12) 



Fundamentals of Agile Frameworks 16 

Mathias Kemeter 

2.2.2 Kanban 

The Kanban approach in software development originated in lean production sys-

tems such as the Toyota Production System (TPS).46 While TPS utilizes a lean pull 

system47 associated with the term kanban (small k), the denomination Kanban or 

Kanban Method (capital K) usually refers to the methodology and its adaption spe-

cific to software development processes.48  

David J. Anderson defines Kanban as “the evolutionary change method that uti-

lizes a kanban […] pull system, visualization, and other tools to catalyze the intro-

duction of lean ideas into technology development and IT operations.“49 Starting 

from this definition, Kanban, at its core, is a lean pull system suitable for software 

development to achieve a continuous pace of work and be able to implement (pro-

cess) changes with minimal resistance.50 

There are several principles associated with Kanban. Most literature refers to these 

five principles for defining the core of the Kanban method:51 

• Visualize work 

• Limit work-in-progress 

• Make policies explicit 

• Measure and manage flow 

• Identify improvement opportunities 

Visualizing work helps to identify wasteful activities and to obtain transparency of 

the current process and its bottlenecks. Value stream maps (VSM) and Kanban 

boards are commonly used visualization tools. The VSM originated from lean man-

ufacturing and is used to visualize the process stages with its average lead and 

processing times. Typical stages for software development are specification, im-

plementation, testing, and others. As the primary operative visualization, the Kan-

ban board makes the work that flows through the process visible alongside the 

 

46 see (Liker, 2003) 
47 see Subsection 2.1.1 
48 see (Anderson, 2010, p. 6) 
49 (Anderson, 2010, p. 6) 
50 see (Anderson, 2010, pp. 2-5) 
51 see (Boeg, 2012, p. 13), (Anderson, 2010, p. 16) 



Fundamentals of Agile Frameworks 17 

Mathias Kemeter 

agreed principles, as shown in Figure 8. In line with the VSM, the Kanban board 

will typically show activity stages where actual work is performed, as well as buffer 

stages where work items wait without adding value or information to the product.52 

 

Figure 8: Visualization of work items and the main Kanban principles in a Kanban board53 

Limiting the work-in-progress (WIP) is a tool that maximizes the throughput of a 

Kanban system according to Little’s law.54 WIP limits are defined for each process 

stage. For activity stages, the optimal WIP limit is dependent on the number of 

developers, whereas, for buffer stages, the WIP limits are defined independently. 

According to the practice of continuous improvement, the process starts with best-

guess limits, which are adjusted over time as the team gathers experience. In ad-

dition to maximizing flow, WIP limits make bottlenecks transparent and enforce 

team discussions, as new work can only be pulled once the current work has been 

done.55 

 

52 see (Boeg, 2012, pp. 21-25) 
53 taken from (Boeg, 2012, p. 15) 
54 Cycle time = WIP/Throughput per Unit of Time 
55 see (Boeg, 2012, pp. 27-32) 



Fundamentals of Agile Frameworks 18 

Mathias Kemeter 

Making policies explicit and agreeing that any change to a policy is a team decision 

is a cornerstone for proper quality assurance. Every team member commits to ad-

hering to these governance rules. If it appears necessary to break a policy, this is 

understood as a trigger for a team discussion on improving existing policies based 

on recent experience. Policies need to be visualized and enforced to prevent the 

degeneration of the process.56 

Measuring and managing the flow of work come as a pair, which is in line with the 

common business principle that one can only manage what gets measured. The 

goal of managing the flow of work is to increase the business value of work and 

decrease cycle times of work items by achieving a steady and sustainable flow, 

where tasks move through the process without wasteful delays and bottlenecks. In 

this context, being sustainable means creating and managing a stable and predict-

able flow. Jesper Boeg suggests considering these measurements to enable 

proper flow management:57 

• A cumulative flow diagram (CFD) shows the current amount of work in the 

system and makes WIP, velocity, and other aspects visible. 

• Cycle time measures the average time it takes a work item to move from 

start to delivery. In addition, the variation of cycle times shall also be deter-

mined to measure the predictability of the process. 

• Defect rate tracks the number of open and newly created bugs to allow 

conclusions on the current state of quality. 

• Number of blocked items identifies and emphasizes issues that prevent a 

steady and optimized flow of work. 

According to the principle of visualization, the measures taken need to be trans-

parently visualized and shared with the team. Figure 9 shows examples for these 

diagrams.  

 

56 (Boeg, 2012, pp. 35-37) 
57 (Boeg, 2012, p. 44) 



Fundamentals of Agile Frameworks 19 

Mathias Kemeter 

 

Figure 9: Visualizing measurements of a Kanban system (CFD, Cycle Time, Defect Rate, 
Blocked Items)58 

Identifying improvement opportunities and acting on them is a vehicle that moves 

a Kanban system from its initial state, which is usually a combination of the current 

process and some best guesses, to an increased level of efficiency. As Kanban 

visualizes bottlenecks clearly and enforces taking explicit and informed decisions 

based on empirical data, improvement potentials can quickly be identified. Actual 

improvement proposals to the system can be quantified and proven by measuring 

their impact. Ad-hoc discussions paired with a regular cadence of retrospectives 

help as a catalyst for continuous improvement of the process.59 

The approach of introducing a Kanban system by starting with the current process 

and gradually implementing the core principles as they have been described above 

illustrates why Kanban is considered a change method rather than a fixed process 

framework. In the words of Corey Ladas, “Kanban is not a process. Kanban is a 

practice that embodies principles.”60 

 

58 taken from (Boeg, 2012, p. 53) 
59 see (Boeg, 2012, pp. 79-80) 
60 (Ladas, 2008, p. 14) 



Fundamentals of Agile Frameworks 20 

Mathias Kemeter 

2.2.3 Scrumban 

The principles of Kanban, as introduced in Subsection 2.2.2, do not exclude the 

implementation of Scrum. Technically, this means a software development team 

can practice Kanban and Scrum simultaneously.61 However, since Kanban is a 

method of change to optimize the flow of work, there will be a tendency to move 

away from the strict ceremonies of Scrum after a few iterations.62 Corey Ladas, 

who coined the term Scrumban, pointed out that “Scrum can also be useful as a 

starting point for an experienced agile team to evolve into a leaner process.”63 

Considering Scrum as a foundation for applying Kanban principles suggests a log-

ical progression towards a team practicing solely Kanban, not Scrum. Accordingly, 

Ladas characterized Scrumban as the transition from Scrum to Kanban.64 

The outcome of this thought process was a “deployment strategy for continuous 

delivery”65 that combines elements of Scrum and Kanban and breaks certain rules 

of the Scrum framework. Starting from Scrum, Ladas suggested sequentially ap-

plying the following process changes to reach an increased flow of work and tran-

sition to a pull-based system:66 

1. Reduce the iteration length to a maximum of 2 weeks. 

2. Set multi-tasking limits. This results in an effective WIP limit, which shall be 

made explicit and forces the team to complete existing work before new 

work gets pulled. 

3. Introduce a late binding of tasks to owners and consequently decouple 

planning from assignment to avoid artificially created bottlenecks. 

4. Introduce a “ready queue” for staging backlog items that are ready to be 

processed. The ready queue implicitly signals the prioritization of work 

items. 

 

61 see (Boeg, 2012, p. 17) 
62 see (Ladas, 2008, p. 100) 
63 (Ladas, 2008, p. 12) 
64 see (Ladas, 2008, p. 85) 
65 (Ladas, 2021) 
66 see (Ladas, 2008, pp. 88-97) 



Fundamentals of Agile Frameworks 21 

Mathias Kemeter 

5. Break down the “in progress” state to a finer granularity of states and intro-

duce additional inter-process buffers.  

6. Use the CFD diagram and associated measures instead of the burndown 

chart to control the process and flow of work. 

7. Do not estimate work items, but use the size of the ready queue as a trigger 

for planning activities. Planning based on the average historical cycle time 

is sufficient. 

8. Define work standards for each process state, which may be improved ac-

cording to the principle of continuous improvement. 

The outcome of this strategy is a leaner process that harmonizes with the principles 

of Kanban and contradicts Scrum in a few aspects: 

• Estimations are not practiced as they are considered a wasteful activity. 

• The team is fully self-organized, and roles such as Product Owner and 

Scrum Master do not exist. 

• Work items do not have artificial deadlines and may well exceed the dura-

tion of an iteration. 

The iterative approach with review and retrospective meetings has been carried 

over from the Scrum framework, as well as the necessity to agree on a “definition 

of done” for work items. According to Ladas, “Scrumban demonstrates the rela-

tionship between continuous delivery and continuous improvement,”67 which both 

remain the ultimate goal of the transition strategy. 

2.2.4 Large-scale Agile Frameworks 

Agile methodologies such as Scrum and Kanban typically target individual cross-

functional and co-located development teams. The “team of ten” or the “two-pizza 

team”68 has become a catchphrase in this context. Due to the popularity and 

proven success of agile software development, larger organizations are also seek-

ing to introduce agile processes at scale to be better prepared for competitive and 

disruptive markets. This approach does not oppose the methodologies introduced 

 

67 (Ladas, 2021) 
68 see (Amazon Web Services, 2023, p. 28) 



Fundamentals of Agile Frameworks 22 

Mathias Kemeter 

earlier in this chapter but opens new problem spaces, which are not yet well cov-

ered by the highlighted tools or best practices. For example, the Scrum framework 

describes only Product Owners, Scrum Masters, and the development team. There 

is no dedicated role, nor is there a necessity for management hierarchies, such as 

middle management or a team leader, which is a predominant concept for handling 

the complexity of large organizations. In addition, development teams in large or-

ganizations tend to have many cross-team dependencies, which does not reflect 

the often-assumed ideal of having a self-organized and self-independent team.69 

There are several agile frameworks, primarily based on Scrum and Kanban, that 

address the scaling needs of large agile organizations. The details and complexi-

ties of these large-scale agile frameworks are beyond the scope of this thesis, but 

for the sake of completeness, the following paragraphs highlight the major frame-

works and their core components. 

The most widespread framework is the Scaled Agile Framework (SAFe). It has 

been built for large organizations and comes with different variants catered to the 

individual needs of an organization. With its basis variant, SAFe introduces three 

planning layers: team, program, and portfolio planning. Each layer follows an indi-

vidual agile process, which is integrated using the agile patterns of the SAFe frame-

work.70 SAFe combines teams into Agile Release Trains and introduces a variety 

of new roles, such as the Product Manager, System Architect, and more.71 Figure 

10 schematically depicts the full complexity and coverage of SAFe. 

 

69 see (Schell, 2019) 
70 see (Schell, 2019) 
71 see (Almeida & Espinheira, 2021, p. 19) 



Fundamentals of Agile Frameworks 23 

Mathias Kemeter 

 

Figure 10: The full complexity of SAFe in a nutshell72 

The Large-Scale Scrum (LeSS) framework is suitable for large projects rather than 

large enterprises. The framework is based on Scrum and limited to a maximum of 

eight teams with eight members working on the same backlog in synchronized 

sprints. It propagates cross-functional teams and eliminates traditional roles such 

as project manager or team leader. With LeSS Huge, a concept also exists for 

scaling to more than eight teams by introducing the role of an Area Product 

Owner.73 

The Nexus framework acts on a similar scale to LeSS and proposes combining 

between three and nine Scrum teams working on the same product and backlog. 

Other than LeSS, Nexus introduces the Nexus integration team to function as a 

glue between the independent teams.74 

 

72 taken from (Leffingwell, 2023) 
73 see (Almeida & Espinheira, 2021, p. 18) 
74 see (Almeida & Espinheira, 2021, p. 18) 



Fundamentals of Agile Frameworks 24 

Mathias Kemeter 

Disciplined Agile Delivery (DAD), Scrum@Scale, and Spotify’s Agile Scaling Model 

are other less popular frameworks. For more details, Almeida and Espinheira con-

ducted a comparative review of large-scale agile frameworks.75 The authors point 

to a study in which seven out of thirteen global companies were found to prefer 

implementing a custom framework for scaling agile practices rather than adopting 

one of the above-mentioned frameworks. Many of these customized frameworks 

are evolutions of failed implementations of a standard framework.76 

2.3 Criticism and Practicability 
Agile approaches such as Scrum and Kanban assume certain preconditions to be 

effectively applicable. Practicing the Agile Manifesto, which prefers customer col-

laboration over contract negotiation and promotes adapting to change, often 

means the project scope is agile and volatile. The volatility in planning and scope 

can create tension with the project management triangle of cost, time, and scope. 

It can also lead to breaches of traditional customer contracts where these aspects 

have been agreed upon in advance. This example shows that the agile mindset 

should ideally be spread across the full value chain of product development, which 

includes developers, managers, customers, and more.  

In their research on challenges when implementing large-scale agile frameworks, 

Conboy and Carroll call this aspect “misalignment between customer processes 

and frameworks.” The study suggests that customers should be involved during 

the selection of a large-scale agile framework.77 While this recommendation may 

be applicable for mid-sized companies with close customer collaboration, it may 

not be practicable for large-scale enterprises with many customers. 

In practice, companies start implementing agile frameworks for only parts of their 

value chain, as implementing them on a broader scale is not possible due to the 

complexity of processes and the lack of control and influence over stakeholders, 

such as customers or even departments within the company itself. At the interface 

between agile practitioners and non-agile parts of the value chain, there is friction 

 

75 (Almeida & Espinheira, 2021) 
76 see (Conboy & Carroll, 2019, p. 44) 
77 see (Conboy & Carroll, 2019, p. 47) 



Fundamentals of Agile Frameworks 25 

Mathias Kemeter 

between traditional outside requirements, agile principles, and the uncertainties 

that the agile mindset embraces. This typically leads to bounding conditions, which 

are unsuitable for implementing agile frameworks. Figure 11 provides an incom-

plete list of bounding conditions that may typically interfere with conditions that are 

ideal for implementing agile frameworks. 

Agile Ideal Enterprise Reality 

Stable teams Fluctuation and reorganizations 

Co-located teams Distributed teams 

Cross-functional teams Functional teams 

Self-organized teams with motivated 
individuals 

Individuals requiring guidance and 
guard rails 

Teams of ten or less Teams of twenty or more 

Focused work on one product Work on multiple products and compo-
nents in parallel 

Greenfield product development Technical debt and high maintenance 

workload 

Predictable work packages Less-predictable aspects, such as re-

search activities and maintenance load 

Close customer collaboration Little customer interaction 

Figure 11: Ideal conditions for applying agile frameworks compared to perceived enterprise 
realities 

The most adopted and, hence, most criticized agile framework is Scrum, which 

dedicates an own role, the Scrum Master, to addressing the friction points men-

tioned above. As Scrum is a framework rather than a process, the solution to ob-

stacles tends to be the appropriate selection and usage of tools in the Scrum 

toolbox. Over time, this large solution space reduces the amount of guidance the 

framework provides and may increase the chance of eventually deviating from the 

Scrum approach. Nevertheless, Scrum Master is a certified role that incorporates 



Fundamentals of Agile Frameworks 26 

Mathias Kemeter 

high investment in terms of training and from a monetary perspective. This per-

sonal upfront investment may lead to the intrinsic motivation of individuals to strictly 

teach and adhere to the commonly propagated Scrum rules. 

Sutherland described this commonly practiced and rigid approach to Scrum as 

Type A Scrum with static isolated sprints. Possible evolutions are Type B or Type 

C Scrums with overlapping iterations and variable sprint lengths.78 This evolution-

ary interpretation of Scrum is close to Ladas’ approach to Scrumban. Ladas sees 

the rigid over-commitment to the Scrum artifacts as an error commonly committed 

by the community of practitioners.79 Conboy and Carroll confirm this view by high-

lighting “overemphasis on 100% framework adherence over value” as one of the 

main challenges companies face when implementing large-scale agile frame-

works.80 

Practitioners of Kanban criticize Scrum for its extensive practice to estimating work 

packages. From a Kanban perspective, which only looks at the overall flow rather 

than individual work items, this is considered a wasteful activity.81 Other central 

artifacts of Scrum are also questioned in literature: 

• The static pattern of daily standup meetings shall be replaced by a strong 

focus on issue management and resolution of impediments.82 

• Planning games cause operational overhead when used in larger teams 

responsible for multiple products.83 

• Product planning, design, and requirements analysis are solely covered by 

the Product Owner role, which trivializes the complexity of this part of the 

process.84 

• Assigning tasks to individuals during sprint planning creates an artificial 

bottleneck. Late-binding of tasks is practiced to increase flow.85 

 

78 see (Sutherland, 2005, pp. 13-14) 
79 see (Ladas, 2008, p. 11) 
80 see (Conboy & Carroll, 2019, p. 47) 
81 see (Anderson, 2010, p. 137) and (Ladas, 2008, p. 99) 
82 see (Anderson, 2010, pp. 90, 240) 
83 see (Anderson, 2010, p. 111) 
84 see (Ladas, 2008, p. 12) 
85 see (Ladas, 2008, p. 89) 



Fundamentals of Agile Frameworks 27 

Mathias Kemeter 

The criticism within the agile community, as summarized above, targets the rigid 

approaches of Scrum in various ways and proposes more demand-based agile 

tools instead. When following this path and moving from Scrum to Kanban, the 

level of direct guidance and easy-to-implement process artifacts decreases, which 

reduces acceptance of the approach in more process-oriented enterprises. Simply 

put, selling a packaged and clearly defined product such as Scrum and its cere-

monies to the management team is easier than selling the confidence that each 

obstacle can be overcome by continuously applying process changes and adapting 

to surrounding conditions. 

In addition to the controversies within the agile community and the point of view of 

management teams, the broader community of software developers addresses 

more shortcomings of the approaches highlighted in Section 2.2. The Manifesto for 

Software Craftsmanship, introduced in Subsection 2.1.3, criticizes the Agile Mani-

festo for its delivery-oriented principles. According to the movement, agile princi-

ples are a catalyst for delivering features for the sake of delivery and flow while 

cutting corners on internal product quality. 

Event Duration Overall hours 

Sprint 4 weeks 160 hours 

Sprint Planning 8 hours 8 hours 

Daily Scrum 15 minutes per day 5 hours 

Sprint Review 4 hours 4 hours 

Sprint Retrospective 3 hours 3 hours 

Backlog Refinement 5% - 10% of sprint 12 hours 

Figure 12: Duration of re-occurring Scrum events for a 1-month sprint86 

Developers tend to consider the ceremonies of Scrum as meeting overhead, which 

effectively reduces focused working time and, subsequently, productivity. Figure 

 

86 see (Schwaber & Sutherland, 2020) and (Sutherland, 2010, p. 27)  



Fundamentals of Agile Frameworks 28 

Mathias Kemeter 

12 shows the meeting durations considered by the Scrum Guide and Sutherland’s 

Scrum Handbook for a one-month sprint. 

While there is no clear recommendation for meeting durations in the Scrum Guide 

regarding other sprint lengths, it is generally assumed that meeting times are line-

arly reduced for shorter sprint durations. Figure 13 shows the relative distribution 

of meeting and non-meeting times in a typical Scrum setup based on the numbers 

in Figure 12. It can be concluded that 20% of the available working time is usually 

spent on meetings.  

 

Figure 13: Relative distribution of meeting and non-meeting times in a typical Scrum87 

The focused working time will typically be significantly less than 80% of the avail-

able working time due to context switches before and after events and further non-

Scrum events like employee meetings. 

In summary, implementing an agile software development process involves vari-

ous challenges and shortcomings: 

• It is desired, but may not be practicable, to implement Agile across the en-

tire value chain. 

 

87 own representation based on assumptions in Figure 12 

80%

5%
3%
2%2%

8%

TIME SPENT IN SCRUM MEETINGS

Non-meeting time

Sprint Planning

Daily Scrum

Sprint Review

Sprint Retrospective

Backlog Refinement



Fundamentals of Agile Frameworks 29 

Mathias Kemeter 

• Project and quality management may conflict with agile development 

teams. 

• Agile embraces uncertainty, while contract and risk management does not. 

• Ideal preconditions for implementing an agile development process are 

hard to achieve. 

• The adoption rate is higher for approaches with simple and exhaustive im-

plementation guidance, which often results in over-commitment to certain 

framework elements. 

• Applying agile principles may result in working but inferior software. 

• Process orchestration and participation reduce the bandwidth of develop-

ers. 

As mentioned in the introduction to Chapter 2, agile principles are based on expe-

rience rather than scientific research. Additionally, there are few robust studies on 

the effectiveness of the methodologies. In their meta-analysis on outcomes of agile 

project management, Koch et al. found only 35 published studies, of which only a 

fraction showed a causal relationship between methodology and outcome.88 In this 

context, Schermuly and Meifert state, “if Agile were a vaccine, we would not even 

have reached phase 1 of testing yet.”89 

2.4 New Work in the Context of Agile 
Adjacent to lean and agile practices, the New Work movement has become popu-

lar in the last decade. This movement originates in Frithjof Bergmann’s concept of 

New Work.90 While Bergmann’s ideas are socially utopian, Markus Väth took them 

further and formulated five principles of New Work, known as the New Work Char-

ter.91 Väth’s less utopian but still humanistic understanding of New Work finds sig-

nificant adoption in the industry. Companies that participated in the New Work Ba-

rometer 2022 were likely to identify the movement with Väth’s New Work Charter 

or the closely related theme of psychological empowerment of employees rather 

 

88 see (Koch, et al., 2023, pp. 688-689) 
89 (Schermuly & Meifert, 2022a, p. 30), translated from German  
90 see (Bergmann, 2004) 
91 see (Väth, et al., 2019) 



Fundamentals of Agile Frameworks 30 

Mathias Kemeter 

than Bergmann’s initial idea.92 This section gives a brief overview of the concept, 

restricting the focus to Väth’s interpretation of New Work and how it relates to agile 

methodologies. 

 

Figure 14: The five principles of the New Work Charter93 

The New Work Charter aims to provide “answers to questions about future leader-

ship models and organizational structures, process and product dynamics, new 

values, and complex economic contexts—economically and humanly.”94 It pro-

poses five principles to be reflected by companies and employees: 

1. Freedom: Granting individuals the freedom to act on new ideas and topics. 

2. Self-responsibility: Simplifying the decision-making process by empower-

ing employees and managers and setting the right boundary conditions with 

financial participation. 

3. Purpose: Creating a common organizational purpose and using employ-

ees according to their strengths. 

 

92 see (Schermuly & Meifert, 2022b, p. 6) 
93 taken from (Väth, et al., 2019) 
94 (Väth, et al., 2019) 



Fundamentals of Agile Frameworks 31 

Mathias Kemeter 

4. Development: Treating the organization as an organism to promote inter-

nal learning structures, organizational self-renewal, and collective decision-

making. 

5. Social Responsibility: Companies and their employees are embedded in 

the wider social, political, and ecological environment. To maintain a sus-

tainable business, it is essential to engage with this environment and value 

its well-being. 

The people-centric and self-managed approach of these principles is reflected in 

the agile and lean movements introduced in Section 2.1. Companies may adopt 

agile frameworks and processes to cope with constant change. Agile can help ad-

dress this challenge from a product perspective, but New Work offers a more com-

prehensive approach by integrating agile methods as part of the New Work tooling. 

 

Figure 15: Percentual adoption of New Work measures in companies in 202295 

After autonomy of workplace/time and provisioning of mobile technology, agile pro-

ject work is the fourth most implemented New Work tool amongst companies that 

participated in the New Work Barometer 2022.96 According to the authors of the 

New Work Barometer, companies miss out on the measure’s potential when im-

plementing Agile solely for increasing the performance and innovation power of 

teams. They propose to additionally aim at using agile approaches for improving 

 

95 own representation based on (Schermuly & Meifert, 2022b, p. 11) 
96 see (Schermuly & Meifert, 2022b, p. 11)  

0% 20% 40% 60% 80% 100%

Self-paced learning
Flat hierarchies
Agile leadership

Open office spaces
Open culture of failure
Self-organizing teams

Agile project work (e.g. Scrum)
Provisioning mobile technology

Autonomy of work time
Autonomy of workplace



Fundamentals of Agile Frameworks 32 

Mathias Kemeter 

efficiency and humanization, which is expected to result in a higher satisfaction 

rate with agile frameworks.97  

While the literature on agile methodologies usually does not reference the New 

Work movement, Agile has become a vital part of the New Work toolbox and is 

referenced in literature accordingly. When implementing Agile in the context of 

New Work, employees may even fail to tell the concepts apart.98 

 

97 see (Schermuly & Meifert, 2022a, p. 28) 
98 see (Schermuly & Meifert, 2022a, p. 30) 



Proposal for a Workstream-based Development Framework 33 

Mathias Kemeter 

3. Proposal for a Workstream-based Development 
Framework 

This chapter proposes a novel Workstream-based Development Framework 

(WDF), based on existing agile frameworks such as Scrum or Kanban, while ad-

dressing some of their limitations. The framework incorporates the principles of 

New Work by giving developers an entrepreneurial role in the development pro-

cess and allowing for flexibility and adaptation in response to changing conditions.  

3.1 Motivation 
The most popular agile framework, Scrum, and its central element of sprints, as 

introduced in Subsection 2.2.1, relies on a team sports metaphor: In most cases, 

team sports is about delivering performance, competing, and eventually winning a 

contest. While this picture resonated well with management principles two decades 

ago, and does so today in some cases, the competitive framing does not resonate 

well with Generation Y or Generation Z employees in the era of New Work, who 

value aspects such as a supportive work environment and work-life balance higher 

than former generations.99  

Additionally, the operating models of software companies have changed from a 

license-based on-premises model towards cloud software, which needs to be op-

erated and continually enhanced and maintained. Being a winning company in this 

market environment is not well encapsulated by a sports analogy—it is less im-

portant to win individual games (i.e., license deals) than to operate successful soft-

ware and maintain customer satisfaction with a resilient and sustainable organiza-

tional setup. This is where the analogy of Software Craftsmanship, with its focus 

on quality, ownership, and collective responsibility, becomes more relevant. 

This master’s thesis proposes an agile development framework based on elements 

of Scrum and Kanban and pursuing a collective approach to software development 

dependent on Software Craftsmanship and New Work principles. As traditional 

craftsmen are technical professionals and, in many cases, small business owners 

 

99 see (Waworuntu, et al., 2022, p. 286) 



Proposal for a Workstream-based Development Framework 34 

Mathias Kemeter 

with an entrepreneurial spirit simultaneously, the Software Craftsmanship perspec-

tive inevitably harmonizes with the New Work principle of self-responsibility based 

on economic value and financial contribution, as described in Section 2.4. 

The main goal of the framework introduced in this thesis is to create a sense of 

collective ownership and contribution in a team of software developers, enabling 

them to focus on the long-term success of the jointly owned product. This way, the 

team gets closer to a collective in its original sense: “an organization or business 

that is owned and controlled by the people who work in it.”100 Eventually, the de-

velopment team will become a vibrant, dynamic collective committed to creating a 

high-quality, versatile, and user-centered product. Figure 16 shows the analogy of 

traditional craftsmen being collectively responsible for the outcome of their work. 

 

Figure 16: Vibrant scene of craftsmen collectively building a barn101 

Shaping and prototyping the framework introduced in this thesis, started by ob-

serving the interactions and outcomes of a team of ten software developers at the 

business software company SAP in 2019. The team initially focused on developing 

one specific database engine within a larger development organization, and their 

internal development process was somewhat aligned with Scrum. 

 

100 (Cambridge Dictionary, 2024) 
101 taken from (Fath, 2018) 



Proposal for a Workstream-based Development Framework 35 

Mathias Kemeter 

The working mode at the time could be seen as a diluted version of Scrum, some-

thing occasionally called by the derogatory name ScrumBut.102 It is possible that 

the team unknowingly took some iterations of Ladas’ Scrumban approach103 and 

moved from their initial Scrum to a more agile and less wasteful process. One 

prominent example is the absence of estimations, which the team has claimed are 

meaningless due to the high amount of less-predictable research work that needed 

to be done in this environment. 

In 2020, during the COVID crisis, which involved economic challenges that caused 

budget and hiring constraints, the team was merged with two other teams. This 

situation eventually led to 20 developers under one formal team leader, who has 

been responsible for four database engines. Because they were unable to re-hire 

on attrition, the staffing of the individual teams became unbalanced, putting the 

development process under stress. This situation caused a significant slowdown 

and loss of focus for major development projects targeting technical debt and also 

customer-facing features. While trying to avoid disruptive redeployment of devel-

opers, the team of 20 sought a more resilient working model that helps rejuvenate 

velocity by enabling a transition from historical team silos to shared responsibility 

for the four database engines across the 20 developers. 

3.2 Overview of Structures and Processes 
This section describes the practices established as part of WDF. At the frame-

work’s core, the development team and respective planning layers are modeled as 

a matrix with technical differentiators in one dimension and planning themes in the 

other. A planning theme, here called a workstream, may span more than one tech-

nical component, and technical components may be involved in more than one 

planning theme. 

Figure 17 shows an example of ten developers working in a matrix setup with three 

technical components and three workstreams. In this example, workstream A in-

volves the technical components A and B, workstream B only involves component 

 

102 see (Scrum.org, 2024) 
103 see Subsection 2.2.3 



Proposal for a Workstream-based Development Framework 36 

Mathias Kemeter 

A, and workstream C is again a cross-topic between components B and C. Each 

workstream is staffed with experts in the respective technical components, 

whereas one individual acts as the lead for the workstream. 

 Workstream A Workstream B Workstream C 

Component A Martin 

Alice 

Jim 
Danielle 

Olivia 

John 

Isabel 

 

Component B  Jacob 
Emily 

Andrew Component C   

Figure 17: Example of ten developers working in a matrix of three technical components 
and three workstreams 

3.2.1 Definition of Planning and Work Units 

Organizing the team as a matrix of technical components and planning themes 

adds to the complexity of the agile planning process, as both dimensions need to 

be considered appropriately throughout the process. Before going into the details 

of the planning and execution process and its different layers, some central terms 

need to be defined: 

• Technical component 
A technical component is a part of a larger software project that, due to its 

size and complexity, requires developers to be experienced with the com-

ponent’s source code to maintain and enhance it. A technical component 

is typically not a complete software product but contributes to it as a tech-

nical backbone. 

• Team 
The software development team is a team of developers responsible for a 

small number of technical components. Each developer may specialize in 

one or more of these technical components. All team members have a com-

mon vision, share the same development process, and appreciate trans-

parency on the overall activities within the team. 



Proposal for a Workstream-based Development Framework 37 

Mathias Kemeter 

• Workstream 
A workstream is a large project or theme developed within the team. It may 

involve more than one technical component, and the development duration 

is between six months and several years. A workstream is ideally self-con-

tained and can be planned and executed independently from other projects 

and initiatives within the team. 

• User story 
The development of encapsulated functionalities or features that contribute 

to a workstream is called a user story. The definition of a user story is sim-

ilar to the concept commonly used in Scrum. However, other than Scrum, 

there is no general recommendation for a user story to fit within the duration 

of an iteration. A single user story can spread over several iterations but 

will never exceed the lifetime of a workstream. 

• Development task 
Each user story consists of multiple development tasks created during plan-

ning and execution. Tasks capture developers’ actual work in the team and 

may be very technical. Each code contribution and developer activity is 

linked to a task. 

Workstreams, user stories, and development tasks define a hierarchy: A team runs 

multiple workstreams spanning one or more technical components. Each 

workstream is organized into user stories, which are iteratively broken down into 

development tasks. 

3.2.2 Layers of Planning and Execution 

Planning and execution within WDF are organized along the hierarchy of layers 

introduced in Subsection 3.2.1. Depending on the respective layer of planning, dif-

ferent team members participate in the planning process to avoid unnecessary 

meetings and planning overhead for those not deeply affiliated with the respective 

planning topic. While Subsection 3.2.4 presents details of meeting audience, du-

ration, and cadence, this subsection introduces the planning layers on an abstract 

level. 



Proposal for a Workstream-based Development Framework 38 

Mathias Kemeter 

From a high-level perspective, the software development team structures its work 

into larger workstreams. The team collaboratively decides which workstreams 

need to be started, paused, or stopped. It should also be clear what the overarching 

goal of the workstream is, how it connects to the team’s vision, and what criteria 

will be consulted to verify whether this goal has been reached. While the goal of 

the workstream remains stable over its lifecycle, the criteria for measuring goal 

achievement are part of a change process and may improve and become more 

concise over time. During workstream planning, the team jointly decides on goal 

refinements and required workstream staffing. Team members assign themselves 

to workstreams based on expertise, preference, and demand. 

The next level of planning occurs within the respective workstreams. As described 

in Subsection 3.2.1, user stories are the main planning objects on the workstream 

level. Developers within a workstream must decide what work packages need to 

be prioritized and achieved to meet the workstream’s overarching goal. Addition-

ally, there needs to be clarity on future staffing requirements and the skills required 

to complete those work packages.  

The concept of user stories is similar to its concept within Scrum. For each user 

story, the planning participants need to agree on a definition of done and nominate 

a responsible developer to divide the user story into individual development tasks 

and finally approve its completion. Figure 18 summarizes the primary goals of each 

planning level. 



Proposal for a Workstream-based Development Framework 39 

Mathias Kemeter 

 

Figure 18: Planning layers and planning cadence of WDF 

At the execution level, individual developers work based on tasks that are part of 

a user story. In addition to tasks originating in workstreams, developers contribute 

to maintenance tasks such as bug handling within the scope of their assigned tech-

nical component. This approach effectively reduces the bandwidth to work within 

the scope of a workstream since these component duties are independent of fea-

ture development. The developers within a technical component will conduct sep-

arate lightweight planning to orchestrate the mostly reactive maintenance activi-

ties. 

3.2.3 Roles and Responsibilities 

Since the team works collaboratively towards the same vision and tries to make 

decisions by agreement, there is no strictly given hierarchy within the team. How-

ever, based on a consensus decision, team members can take on specific roles 

within the framework. By assigning roles and responsibilities to accountable indi-

viduals, less critical decisions can be made more efficiently, and only more signifi-

cant and valuable discussions may be shared with a wider audience within the 

team. 

Having visible roles also promotes less experienced colleagues’ growth and opens 

the possibility of widening their responsibilities within a controlled scope and for a 



Proposal for a Workstream-based Development Framework 40 

Mathias Kemeter 

defined duration. Roles are not assigned exclusively, meaning one developer may 

have several roles simultaneously. 

For WDF, one or more individuals must be assigned to the following roles based 

on team consensus. 

3.2.3.1 Workstream Lead 

Each workstream is led by a developer, who oversees the activities within the 

workstream and acts as a single point of contact for stakeholders outside the re-

spective workstream. The Workstream Lead is assigned by a joint team decision 

when the workstream gets initially defined during the quarterly workstream plan-

ning. Taking this role involves a long-term commitment: Unlike other workstream 

members who can switch workstreams based on demand, the Workstream Lead 

should stay consistent throughout the workstream lifecycle. 

3.2.3.2 User Story Owner 

There is always one developer responsible for delivering a user story. Being the 

assigned owner of a user story does not necessarily mean being involved in its 

development tasks. The main responsibility of the User Story Owner is to break 

down the work package into individual development tasks and refine them regu-

larly. Furthermore, the User Story Owner is the only person who can approve the 

completion of a user story based on its definition of done and is the single point of 

contact for this user story. 

3.2.3.3 Task Assignee 

Developers within a workstream may take any task created by a User Story Owner 

of the same workstream and assign themselves to complete it. Typically, the as-

signment happens in coordination with the other workstream members during their 

daily cadence. 

3.2.3.4 Component Architect 

Each technical component has an assigned chief architect, who must be consulted 

for major technical decisions made within a workstream that touch upon the re-

spective technical component. The Component Architect may decide to consult 



Proposal for a Workstream-based Development Framework 41 

Mathias Kemeter 

with other developers assigned to this technical component before making a final 

decision. Furthermore, the Component Architect orchestrates any maintenance ac-

tivities within the component.  

3.2.3.5 Collaboration Catalyst 

Like the Scrum Master described in Subsection 2.2.1.1, the Collaboration Catalyst 

supports the team to stay consistent with the development framework. The Collab-

oration Catalyst does not need to be a single person, but the role may be shared 

between a small number of developers. Like the Workstream Lead, this role stays 

consistent over a longer period, as frequent changes may cause tensions in the 

team and result in a reduced flow of work through the process. 

3.2.3.6 Team Lead 

WDF does not make the Team Lead a mandatory role as it is based on collective 

decision-making, self-organized teams, and collective ownership. However, this 

framework specifically addresses the needs of teams within large development or-

ganizations. This environment is common in enterprise companies, where teams 

are embedded into a given hierarchy. Consequently, the role of the Team Lead or 

Development Manager is already manifested and should be leveraged to the best 

of its ability during the development process. There are at least two ways the Team 

Lead can effectively contribute to the team’s success, given their role in the wider 

organization: 

• Bridge to the corporate environment: Agile cells are often embedded in less 

agile environments, which leads to the tensions described in Section 2.3. 

The Team Lead is in an ideal position to safeguard the team from external 

requests that interfere with their development process. On the other hand, 

the Team Lead is able to translate the goals and progress of the team into 

an externally comprehensible message. 

• Escalation instance: If, in certain situations, the team fails in its process of 

collective decision-making, the Collaboration Catalyst shall be the first es-

calation instance. In the rare event of deadlock situations, the Collaboration 



Proposal for a Workstream-based Development Framework 42 

Mathias Kemeter 

Catalyst may decide to involve the Team Lead to include the corporate per-

spective in the decision. 

The Team Lead is considered a part of the development team and can optionally 

have the additional developer role. 

3.2.4 Meeting Structure, Cadence, and Duration 

To jointly plan and execute tasks on the layers introduced in Subsection 3.2.2, a 

dedicated meeting structure facilitates collaboration and knowledge-sharing on the 

various levels. The general meeting structure of WDF is comparable to the struc-

ture given by the Scrum framework in Subsection 2.2.1.2. However, WDF adds the 

aspect of quarterly workstream planning and weekly component circles while re-

ducing the duration of other events known from Scrum. Figure 19 gives an over-

view of meetings with their respective cadence and duration. 

 Cadence Audience Duration Moderator 

Workstream Planning Quarterly Team 1.5h Collaboration 

Catalyst(s) 

Workstream Iteration 
Wrap-up 

Bi-weekly Workstream 0.5h Workstream 

Lead 

Iteration Review Bi-weekly Anyone 0.5h Collaboration 
Catalyst(s) 

Iteration Retro  
+ Outlook 

Bi-weekly Team 1h Collaboration 
Catalyst(s) 

Workstream Circle 3-4 times 

per week 

Workstream 0.25h Workstream 

Lead 

Component Circle Weekly Component 1h Component 

Architect 

Figure 19: Meeting cadence and duration of WDF 

Each meeting has a specific purpose and may or may not require individual prep-

aration by team members. It is more important to keep the purpose of the event in 



Proposal for a Workstream-based Development Framework 43 

Mathias Kemeter 

mind than to follow a fixed agenda. The team may individually and optionally agree 

on an agenda if this helps ensure the essential talking points have been touched. 

These meetings, as listed in Figure 19, need to be considered as part of the pro-

cess: 

3.2.4.1 Workstream Planning 

Every quarter, the team decides jointly which workstreams to start, pause, and 

stop. Stakeholders or team-internal initiatives may trigger those changes to the 

workstream setup. Each Workstream Lead is asked to prepare an overview of the 

workstream’s agenda for the next quarter, which helps the team understand the 

state of each ongoing workstream. If the team decides to pause a workstream, it 

is not discussed during the iteration. In particular, the team does not conduct 

workstream circles and iteration wrap-ups for paused workstreams. 

3.2.4.2 Workstream Iteration Wrap-up 

The workstream iteration wrap-up is the preparation meeting for the iteration re-

view and outlook. The goal is to discuss the progress of the last iteration and the 

planning for the upcoming iteration within the small group of developers currently 

assigned to the workstream. This approach keeps detailed discussions out of the 

review and outlook meetings with a larger audience. Ideally, during the iteration 

review, the Workstream Lead presents the results of the wrap-up meeting and clar-

ifies open questions. Consequently, having a thorough wrap-up meeting within the 

workstream enables shorter meetings with a larger audience. 

3.2.4.3 Iteration Review 

Any stakeholder interested in the team’s progress may be invited to this meeting, 

including adjacent and dependent areas such as documentation or solution man-

agement teams. Each Workstream Lead or a dedicated substitute gives an over-

view of the progress made during the last iteration. This overview is not limited to 

delivered features but may include technical details or work in progress to increase 

the transparency of activities across the team. 



Proposal for a Workstream-based Development Framework 44 

Mathias Kemeter 

3.2.4.4 Iteration Retrospective + Outlook 

The team-internal retrospective and planning are combined into one event. While 

the retrospective part of the meeting does not deviate from what has been de-

scribed in Subsection 2.2.1.2, the emphasis of iteration planning is shifted towards 

an outlook. This naming indicates that the actual planning happens within the 

workstream iteration wrap-up, and the results are communicated to the broader 

team during the outlook. However, at this stage, legitimate discussions or objec-

tions from the broader team are still welcome and may require follow-up with cer-

tain developers. Workstream Leads may communicate the necessity of changing 

staffing due to missing skills or resource demand. The team jointly discusses the 

staffing situation, and individuals may switch their workstreams based on a collec-

tive decision. 

3.2.4.5 Workstream Circle 

As development will happen collectively, developers within a workstream are ex-

pected to collaborate and talk frequently without waiting for dedicated meeting 

slots. Some individuals may even choose to practice pair programming to foster 

collaboration and knowledge sharing. This approach makes fixed daily meetings 

for synchronization less important. However, for more inexperienced developers in 

a remote or hybrid work environment, the concept of daily meetings, as used in 

Scrum, still adds value to the collaboration process. Depending on preference, the 

workstream may opt for daily or bi-daily “circle” meetings. As suggested in Section 

2.3, these meetings do not follow a static pattern but focus on issue management 

and resolving impediments. The format offers a safe circle for seeking support from 

fellow developers. 

3.2.4.6 Component Circle 

Similar to the daily workstream circle, there is a weekly component circle that fa-

cilitates collaboration between the developers assigned to the same component. A 

weekly cadence with a longer meeting duration caters to the less interaction-critical 

maintenance activities within a component better than a daily cadence, which may 

result in meeting overhead. Within the component circle, ongoing activities such 



Proposal for a Workstream-based Development Framework 45 

Mathias Kemeter 

as the assignment and resolution of bugs can be discussed. The forum can also 

discuss technical requests that previously arose within the workstreams. 

3.2.4.7 Exemplary Bi-weekly Meeting Schedule 

It is strongly suggested by WDF to parallelize the meeting events introduced in 

Subsection 3.2.4 to a maximum. Holding all daily workstream circles simultane-

ously ensures that developers are unable to join the circle of a workstream they 

are not currently affiliated with, although experienced developers with broad inter-

ests may be tempted to do so. Furthermore, the parallel occurrence of meetings 

makes it easy for developers to switch workstreams at the end of an iteration, as 

they do not have to change their daily schedule and habits. 

A situation where the members of workstreams or components wish to change 

their meeting schedule can quickly put the overall team schedule at risk, as com-

peting meeting situations, such as those between the daily workstream circle and 

the component circle, may impede developers entering the workstream in the fu-

ture. The Collaboration Catalyst needs to prevent those situations without excep-

tion. 

 

Figure 20: Exemplary bi-weekly meeting schedule for WDF 



Proposal for a Workstream-based Development Framework 46 

Mathias Kemeter 

An exemplary meeting schedule with an iteration length of two weeks is depicted 

in Figure 20. The schedule uses parallelization where possible and foresees a daily 

event at 14:00 and additional meetings on Wednesdays at 10:00. To avoid meeting 

overhead, it makes use of the fact that workstream circles are not mandatory to be 

conducted daily. This gives the flexibility to optionally introduce a meeting-free 

day—in this case, denoted as “Focus-Friday”. 

In weeks where new iterations begin, the meeting-heavier Wednesday is used to 

conduct iteration review, retrospective, and outlook. These events are preceded 

by the workstream iteration wrap-up on Tuesday afternoon. On Wednesdays, the 

component circle replaces the usual workstream circle. When using the concept of 

meeting-free days, the workstream members still meet at least three times per 

week, which is tolerated by the framework as per Subsection 3.2.4.5. 

Every second week leaves spare time on Wednesdays, which may be shared 

among meetings with a lower cadence, including the quarterly workstream plan-

ning, as well as meetings that are not part of WDF, such as a general monthly team 

meeting. 

3.2.5 Guardrails for Focused Delivery 

Certain guardrails must be applied to avoid dilution of the development process 

over time. These are a set of rules that ensure that the team remains focused on 

delivering toward the goal of the workstreams instead of investing in less valuable 

work. This subsection summarizes the main areas of risk and the rules for mitiga-

tion. 

3.2.5.1 Collective Decisions Require Full Transparency 

It needs to be ensured that the team is empowered to make collective decisions. 

Otherwise, the team risks important decisions being taken within the authority of 

workstreams or user stories without involving the broader team and respective 

Component Architects. As synchronization between workstreams and the broader 

team happens at the transition between iterations, the following should be consid-

ered: 



Proposal for a Workstream-based Development Framework 47 

Mathias Kemeter 

• Always use an iteration length of two weeks 
Workstream-based development works best with an iteration length of two 

weeks. Longer periods will decrease the level of team synchronization and 

transparency. Shorter periods will cause a high meeting density as regular 

framework meetings, like iteration review, will happen in the same week as 

preparation-intensive and less frequent meetings, such as workstream 

planning. 

• Prepare meeting content and take its scope seriously 
To reduce meeting overhead, meeting durations within the framework have 

been set as short as possible. It is assumed that preparation for the respec-

tive meeting happens within the workstreams or on an individual level. If 

meetings are not prepared or the scope is not taken seriously, the team 

risks skipping relevant discussion points and decreasing transparency on 

activities. 

• Establish a culture of curiosity 
A handful of enthusiastic developers can make the difference between an 

efficient framework implementation and a diluted process. When establish-

ing a culture of curiosity and collective ownership, individuals will start chal-

lenging the output and planning of workstreams. Discussions at the team 

level are a great vehicle to get external input for the workstreams and in-

crease transparency on details amongst the team.  

• Make process changes transparent 
Ongoing change is part of the agile mindset. Despite the guardrails defined 

here, there may be a need to adapt the process in certain aspects. It must 

be avoided to make adjustments to the process without notice and assume 

joint agreement. Instead, each process change needs explicit collective 

consent from the team. 



Proposal for a Workstream-based Development Framework 48 

Mathias Kemeter 

3.2.5.2 Getting Things Done by Focusing on Major Workstreams 

Frequent context switches and multitasking are known to reduce individuals’ and 

teams’ productivity due to the associated mixing and switching costs.104 Weinberg 

tried to quantify the impact of task switching for software development teams and 

found that each simultaneously started project adds 20% of switching costs to the 

team’s effort. So, a developer working on two projects would have an availability 

of 40% per project and 20% switching costs. While other studies show that Wein-

berg’s heuristic overestimates the effect, they still confirm the increased switching 

costs per parallel project.105 

 

Figure 21: The cost of task switching for software developers 

Contrary to the popular call to “do more with less,” WDF propagates the initiative 

to “do less with more,” which means working on less topics with more developers 

per topic. This approach requires a conscious prioritization and selection of topics 

ensured by appropriate guardrails: 

• A minimum of three developers per workstream 
Having at least three developers per workstream helps the team focus on 

the most important topics and get things done instead of massively paral-

lelizing topics based on stakeholder demand. Additionally, this guardrail 

 

104 see (American Psychological Association, 2006) 
105 see (Tregubov, et al., 2017, p. 138) 

0%

20%

40%

60%

80%

100%

1 2 3 4 5

Pe
rc

en
t E

ffo
rt

Number of Simultaneous Projects

Loss to Context Switching Working time available



Proposal for a Workstream-based Development Framework 49 

Mathias Kemeter 

ensures proper knowledge transfer within the team, subsequently increas-

ing resilience of the overall team setup. The team is less dependent on 

singular developers with deep expertise in certain areas. 

• Each developer is assigned to one workstream per iteration 
To avoid a situation where developers take on tasks that do not contribute 

to the team’s priorities, each developer is assigned to exactly one 

workstream. Switching workstreams during an iteration or taking on tasks 

from other workstreams is not allowed. Consequently, when running idle, 

each team member is forced to select a follow-up task within the scope of 

the current workstream. This guardrail is ideally enforced by a parallelized 

meeting structure as proposed in Subsection 3.2.4.7. 

• The Workstream Lead is stable 
The Workstream Lead has a long-term commitment to this role and should 

not switch roles during the lifecycle of the workstream without a compelling 

reason, such as employee attrition. 

• Make pausing workstreams a good habit 
The guardrails described in this subsection appear restrictive and difficult 

to reach for teams that adopt this framework. It ultimately reduces the num-

ber of parallel topics within a team to a minimum. The core idea is to close 

topics before starting with new developments. This makes it necessary to 

consciously pause or even stop workstreams, which may cause difficult 

conversations with stakeholders. As per Subsection 3.2.3.6, the Team 

Lead is in a good position to discuss the team’s decision with stakeholders. 

The team should concentrate on making workstream management a good 

habit, especially putting workstreams on hold. 

3.2.5.3 Refine Work Packages Constantly 

Workstreams, user stories, and development tasks need constant refinement. This 

means adding new work packages, stopping deprecated work, or changing exist-

ing definitions. Depending on the planning level, which requires refinement, the 

following should be considered: 



Proposal for a Workstream-based Development Framework 50 

Mathias Kemeter 

• Quarterly refinement of workstreams 
Changes to workstreams are discussed during the workstream planning 

meeting with the team, as these changes typically have a substantial im-

pact. A new workstream should have a duration of at least six months while 

engaging at least three developers. If a topic does not fulfill this criterion, 

there is a high chance that it should be considered a user story that is part 

of a larger workstream. 

• Bi-weekly refinement of user stories 
User stories are refined on a workstream level within the bi-weekly wrap-

up sessions. Depending on the impact of the change, the Workstream Lead 

may decide to involve Component Architects or the whole team by facilitat-

ing a discussion during the bi-weekly outlook meeting. User stories belong 

to workstreams and may have any duration between a couple of days and 

up to six months. 

• Daily refinement of development tasks 
Tasks, which reflect actual development work, are refined daily. As the re-

finement occurs within the boundaries and scope of the user story, these 

changes typically do not require a discussion. The User Story Owner may 

make ad-hoc changes to the tasks and, as a minimum, must communicate 

or discuss this with the affected developers during the daily workstream 

circle meeting. The input of one or more Component Architects may be 

required. 

3.3 Best Practices and Recommendations 
WDF, as described in Section 3.2, leaves various degrees of freedom in its imple-

mentation despite the guardrails applied with Subsection 3.2.5. As the framework 

is backed by an agile mindset, teams will choose to fill any gaps with agile elements 

and tools known from the frameworks introduced in Section 2.2. This section co-

vers the most essential best practices to consider during the implementation and 

execution of the framework. 



Proposal for a Workstream-based Development Framework 51 

Mathias Kemeter 

3.3.1 Integration of Feedback Loops 

As the team runs their software components collectively and self-independently, 

they are expected to accept and incorporate relevant team-external feedback at 

any time and in their own interest. Depending on the expected impact, iteration and 

workstream planning may be used to discuss the implications of following up on 

the feedback. 

There is also the iteration review in the framework, a formal event for gathering 

feedback from stakeholders. The team may decide to explicitly invite stakeholders 

to instances of the meeting series if their feedback is required.  

Given the technical and detailed nature of iteration reviews, it is worthwhile con-

sidering incorporating a practice observed in Scrum implementations: lightweight, 

informational Show & Tell Sessions held less frequently (quarterly or bi-quarterly) 

and aimed at engaging stakeholders less familiar with the intricacies of specific 

software components. In these sessions, the team selectively promotes features 

with an end-user impact and concentrates on demos and practical examples rather 

than technical implementation details. 

3.3.2 Team-internal Craftsman Swaps 

The Software Craftsmanship movement identified craftsman swaps as a valuable 

tool to foster innovation and widen the expertise of individual developers. In an 

enterprise environment with corporate silos, it can even be challenging to change 

topic clusters within an organization or team in a non-disruptive manner. To bal-

ance staffing between teams, managers may reassign certain developers based 

on demand. However, this “lift and shift” approach typically involves disruptions for 

the affected developer and the sending and receiving teams. It may even be per-

ceived as a small-scale reorganization. 

The framework introduced in Section 3.2 defines boundaries to allow developers 

to voluntarily change their scope of work while setting the right incentives with the 

mindset of shared ownership. While it is not mandatory for developers to change 

their scope of work regularly, the team culture should encourage it. Some individ-

uals may choose to stick to topics they feel most comfortable with, while others will 

experience the team-internal swaps as an opportunity to gather experience and 



Proposal for a Workstream-based Development Framework 52 

Mathias Kemeter 

build expertise. Certain skill sets, such as low-level performance experts, may be 

able to change workstreams from iteration to iteration while consistently keeping 

their individual focus and contributing performance-related knowledge. 

In summary, the flexibility to change topic clusters within a team in a non-disruptive 

way is not an option but a cornerstone of WDF. As described in Section 4.2, teams 

may choose to make little use of this powerful tool when initially implementing the 

framework but will increase and normalize its use over time. 

3.3.3 Product Focus and Continuous Flow 

It was implied in Section 3.1 that teams may lose focus when their process is under 

pressure due to external factors. Pressure typically leads to a high amount of par-

allelization, which comes with the mixing and switch costs described in Subsection 

3.2.5.2. This situation causes a slowdown of flow, which worsens when looking at 

the behavior of individuals: Developers, like any human, may tend to procrastinate 

under pressure.106 Hence, they may select rewarding but less important work pack-

ages over difficult and less rewarding topics that need prioritization. Agile method-

ologies, if not implemented correctly, can function as a catalyst for reprioritization 

on an individual level. Individuals may hide procrastination by parallelizing work 

and reporting progress on multiple work packages.  

To avoid situations where developers are prone to procrastination, WDF forces 

everyone to focus on a given workstream. This enables the small group of 

workstream members to be closely involved with any development activities and 

to detect work with little value-add as early as possible. The restriction that subse-

quent or parallel development tasks can only be chosen from the scope of the 

workstream makes it harder to procrastinate on the overall workstream goal. 

Developers may still choose to parallelize less-rewarding work packages with work 

packages where they expect a motivation-boosting short-term win. However, the 

framework ensures that even this short-win contributes to progressing the overall 

workstream. This way, a total slowdown of the workstream is unlikely to happen if 

 

106 see (Diepstraten, 2022, p. 20) 



Proposal for a Workstream-based Development Framework 53 

Mathias Kemeter 

it has not been transparently and explicitly put on hold following a joint team deci-

sion. 

Shaffer and Kazerouni suggest that introducing project milestones decreases pro-

crastination within a project and increases the quality and speed of outcomes.107 

The personas that can effectively introduce milestones within this development 

framework are Workstream Leads and User Story Owners. The proper breakdown 

of work into user stories and development tasks is a core responsibility for manag-

ing not only velocity and flow, but also team culture. 

3.4 Summary of Proposal 
WDF, as introduced in this thesis, enables a development team to become a vi-

brant, dynamic collective committed to creating a high-quality, versatile, and user-

centered product. Unlike other agile frameworks, it specifically addresses a large 

corporate organization’s need for resilient teams with balanced staffing according 

to business priorities. 

WDF organizes the development process of a software development team into two 

dimensions: workstreams, which capture major development themes, and tech-

nical components, which organize maintenance activities and consult workstream-

based developments. The framework proposes a parallelized meeting structure to 

manage this complexity while at the same time reducing meeting overhead. 

The division of major themes into workstreams, together with the restriction to staff 

each workstream with at least three developers, fosters focused work on prioritized 

themes. Team-internal craftsman swaps with reduced switching costs enable the 

team to flexibly move skilled developers to workstreams where their work contrib-

utes most to the team’s success. 

The team continuously refines work packages on the different planning layers and 

gathers feedback with iteration reviews and Show & Tell sessions, which are 

known from implementations of Scrum. 

 

107 see (Shaffer & Kazerouni, 2021, p. 6) 



Practical Implementation and Evaluation 54 

Mathias Kemeter 

4. Practical Implementation and Evaluation 
As mentioned in Section 3.1, Workstream-based Development Framework (WDF) 

has been initiated and prototyped by a software development team at the business 

software company SAP. This chapter summarizes the experience gathered while 

conceptualizing and implementing the new development framework. The chapter 

concludes with an analysis of the advantages, downsides, and challenges identi-

fied after using the framework for several months. 

The relevant team is part of the development organization behind SAP’s database 

offering. SAP HANA is an exceptionally large development project with more than 

36 million lines of code and more than 3,000 authors contributing over 1.4 million 

commits since the year 2000. The source code is split into approximately 200 tech-

nical components, which are owned by the respective development teams.108 Fig-

ure 22 compares lines of code between SAP HANA and popular large open-source 

software projects. 

 

Figure 22: Comparing lines of code (millions) between SAP HANA and large open-source 
software projects as of May 2022109 

According to Westrum’s three cultures model, as introduced in Subsection 2.1.1, 

the team and its embedding organization may be allocated towards the generative 

 

108 see (Bach, et al., 2022, p. 196) 
109 own representation based on (Bach, et al., 2022, p. 196) 

0

5

10

15

20

25

30

35

40

SAP H
ANA

Chro
mium

Fire
fox

Lin
ux

Free
BSD

Lib
reO

ffic
e

CERN R
OOT

MyS
QL

Pos
tgr

es

SQLit
e

Li
ne

s 
of

 C
od

e 
(m

illi
on

s)



Practical Implementation and Evaluation 55 

Mathias Kemeter 

spectrum with a bureaucratic notion. Historically, the team has been merged from 

three teams with three different managers (subsequently referred to as “micro-

teams”), where each team owned one or two components within the database 

product, into one team under one formal manager (subsequently referred to as “the 

team”). Each of the three microteams ran an agile process with different iteration 

lengths and made individual use of the tools introduced in Section 2.2. The con-

ceptualization of a new collaboration framework was triggered by two aspects: 

• Manager perspective 
The different iteration cycles of the individual teams increase complexity 

when reporting progress to upstream management: The team is expected 

to deliver on joint projects, which results in splitting these projects into silos 

within the team with some associated overhead costs due to the asynchro-

nous development cycles. Furthermore, certain skills and roles are effec-

tively redundant since it is unclear whether each microteam needs a sepa-

rate quality, performance, or process expert. 

• Developer perspective 
The increasing variety of topics and management expectations of delivery 

led to each developer parallelizing several topics, which made focused 

teamwork challenging. Some individuals experience the opportunity to col-

laborate with other microteams as a personal gain. 

These triggers created a suitable environment for implementing a new framework 

that specifically addressed the challenges this team and others in the software in-

dustry have been facing. 

4.1 Iterative Conceptualization 
The conceptualization of the new development framework was based on the re-

sults of an employee survey, where the development team expressed a desire to 

parallelize fewer development topics and, instead, team up on certain focus topics 

to enable team-internal collaboration and knowledge transfer.  



Practical Implementation and Evaluation 56 

Mathias Kemeter 

The team decided to use elements of Design Thinking, in particular the Define and 

Ideate phases,110 to develop a problem description and approaches to mitigate the 

identified issues.  

 

Figure 23: Team ideation on shortcomings of the historical development process (actual 
screenshot) 

The unstructured result of the team’s ideation session on the shortcomings of their 

current way of working is shown in Figure 23. The open feedback can be clustered 

into the following topics, which represent mainly the developers’ perspective: 

• Better balance of workload between components 

• Clear roadmap and clear prioritization across components 

 

110 see (Dam & Siang, 2024) 



Practical Implementation and Evaluation 57 

Mathias Kemeter 

• Focus according to defined priorities 

• Ability to re-prioritize if needed 

• Approach topics as a team 

• End-to-end customer feedback 

• Improved knowledge management 

• More staffing 

Based on those results, the team and their manager agreed that a new develop-

ment framework should address these five main challenges: 

• Focus on topics as one team 
Getting things done by being able to focus on topics as a joint team instead 

of creating overhead through parallelization and frequent context switches. 

• Continuously deliver features 
Keeping the (visible) flow by continuously delivering roadmap features in-

stead of solely investing in less visible but still valuable engineering tasks. 

• Handle maintenance and operational tasks 
Maintaining the base of the product by continuously fighting bugs and tech-

nical debt while still being able to ship features to customers. 

• Balance workload 
Being resilient to changing surrounding conditions by balancing the work-

load between the technical components as required per priority. 

• Drive innovation 
Achieving sustainable long-term success by driving innovation and invest-

ing in research activities that ensure a cutting edge in the future market 

environment. 

The necessity to focus on major development topics as a team of multiple devel-

opers necessitated the compartmentalization of work into discrete projects. Sub-

sequently, those projects were called workstreams to emphasize the expectation 

of continuous flow within the project. The desire to act transparently as one team 

resulted in the planning hierarchy introduced in Subsection 3.2.2, which enables 

major parts of the team to have transparency and co-determination on a digestible 

level.  



Practical Implementation and Evaluation 58 

Mathias Kemeter 

After those main elements of the framework had been defined, the team leveraged 

the Design Thinking concept of prototyping new ideas early and continuously re-

fining the process.111 The guardrails described in Subsection 3.2.5 were iteratively 

prototyped and integrated into the refined process to avoid degeneration and mo-

tivate individual developers to fully adopt the new framework instead of rebranding 

historical work patterns to match the new roles, events, and artifacts.  

 

Figure 24: Result of whiteboarding iteration for process improvement after initial framework 
adoption (actual screenshot) 

Figure 24 shows the output of a process improvement iteration. With this specific 

iteration, the team decided to better leverage and structure meeting artifacts such 

as iteration review and workstream circle.112 It also decided to pause workstreams 

more consciously to avoid overhead due to parallelization.113 

4.2 Change Management and People Transition 
In an ideal setup, the team, as well as each individual within the team, would have 

participated equally and in their own interest in the conceptualization process out-

lined in Section 4.1. In practice, the team at SAP experienced at least three cate-

gories of participation for individual team members: 

 

111 see (Dam & Siang, 2024) 
112 see Subsection 3.2.5.1 
113 see Subsection 3.2.5.2 



Practical Implementation and Evaluation 59 

Mathias Kemeter 

• Constructive participation 
Team members who choose to participate constructively have an intrinsic 

interest in conceptualizing a working model that benefits the team and 

themselves. The interest may be sparked by a general interest in agile 

methodologies or by the sheer awareness that they will be impacted by the 

outcome of the discussion. 

• Regressive participation 
Team members who choose to participate regressively would like to avoid 

change as it involves effort and bears a certain risk, which the individual is 

not willing to take at this time. This view seems in many cases to be caused 

not by a strong belief in the status quo but by the wish to avoid disruption. 

• Nominal participation 
Team members who choose to limit their participation to a nominal contri-

bution invest as little as possible into the discussion as they do not 

acknowledge the value and impact of its outcome. Talking about the pro-

cess of how work is done instead of actually doing work appears to them to 

be a wasteful activity. Figure 25 humorously depicts this participation type. 

 

Figure 25: Humorous internet meme of workers prioritizing actual work over process 
change activities114 

 

114 unknown source 



Practical Implementation and Evaluation 60 

Mathias Kemeter 

For the team at SAP, only a very few members chose to participate regressively. 

The majority either participated constructively or nominally in the discussion. Coun-

terintuitively, from a change management perspective, the group participating re-

gressively is less challenging than the group only participating nominally in the 

process. Regressive participation may still add value to the conceptualization 

phase as these individuals express strong opinions, which should be incorporated 

into the decision process. As they make their point of view transparent, it is easier 

to address their needs and desires while transitioning to a new framework. 

The underlying needs of individuals who choose to participate nominally are less 

clear. While transitioning the team into the new framework, there is a chance that 

they will suffer from the decisions that have been made without their contribution. 

Regular pulse checks on the satisfaction level of the team and its members help 

assess how well these individuals are captured by the transition process. The iter-

ative conceptualization approach, as explained in Section 4.1, makes it easy for 

nominally participating individuals to switch to active participation in the decision 

process at any point in time. 

As mentioned in Section 4.1, the team at SAP also prototyped their improvement 

ideas during the conceptualization. Drafting the initial workstream-based model re-

sulted in an iterative conceptualization that went hand-in-hand with a gradual im-

plementation of enhancements by manifesting successfully prototyped concepts 

into the development process. The gradual implementation of WDF followed a 

three-step approach: 

1. Establish a joint agile framework 
As the teams started with diverse processes with different iteration lengths, 

the first step was to streamline those processes and align each microteam 

with an iteration length of two weeks and the general meeting structure, as 

outlined in Subsection 3.2.4. Former Scrum Masters, who had been con-

structive participants in the conceptualization, shared the role of the Col-

laboration Catalyst. 

Formally, every microteam was now called a “workstream”. As the previous 

microteams still acted as a unit, this transition did not cause any major dis-

ruption to individuals but prepared the overall team to reinforce its level of 



Practical Implementation and Evaluation 61 

Mathias Kemeter 

collaboration. Also, the assignment to technical components was made 

based on the previous team setup, which had already been organized 

along these components. 

From an organizational perspective, the previous teams’ historically sepa-

rate task-tracking systems (several Jira instances) were merged into one 

cross-team task-tracking system (one Jira instance). 

2. Spin-off workstreams 
Once the joint framework has been established and settled in, the team 

begins spinning off the first workstreams, which no longer correspond to 

the previous microteams. Good candidates for a seamless spin-off are very 

large projects within the microteams or cross-component projects involving 

more than one microteam. In practice, the team at SAP identified three 

candidate topics that transitioned into workstreams. The workstreams, de-

fined in Step 1, continued if there was sufficient remaining staffing (at least 

three developers) after moving developers to the new workstreams. 

3. Become productive 
This last step is reached when the team becomes independent from the 

previous microteams established according to component responsibilities. 

Each team member now has transparency on the overall team’s priorities 

and acts in their interest. Workstreams are started, stopped, and paused 

interactively based on a joint team decision, and team members participate 

in those workstreams based on demand. 

The duration of each transition step depends on the team’s satisfaction rate and 

the necessity of re-adjusting certain screws in the process. Entering the next stage 

of transition must be an explicit decision made by the team. The gradual transition 

from microteams to one team acting within WDF is summarized in Figure 26. 



Practical Implementation and Evaluation 62 

Mathias Kemeter 

 

Figure 26: Three steps to gradually transition from Scrum to WDF 

Based on the experience made, spinning off workstreams that do not correspond 

to the historical team setup, is the most disruptive step in the transition. Each team 

member should have regular check-ins with their manager or the Collaboration 

Catalyst to prevent a regressive spirit in the team at this stage. Even beyond the 

transition phase, the goal should be to facilitate the right dose of disruption when 

introducing new workstreams. New workstreams present a natural opportunity for 

a change in team dynamics, and recent studies indicate that certain challenges 

and tensions within the team may increase its resilience and success.115 

4.3 Use of Collaboration Technology 
Since the rise of New Work and the beginning of the COVID pandemic as a cata-

lyst, hybrid working has become the predominant working model in information 

technology companies and other businesses. Teams no longer permanently work 

in collocation, but individuals leverage the given autonomy of workspace and work 

time, as depicted in Figure 15. This change in work culture makes it imperative to 

support employees and teams with digital and asynchronous communication and 

collaboration technology in addition to traditional, yet still relevant, face-to-face 

communication. This section outlines selected digital technology and tooling that 

 

115 see (Grass, et al., 2021, p. 8) 



Practical Implementation and Evaluation 63 

Mathias Kemeter 

has proven effective in supporting the conceptualization and, eventually, the run-

ning of WDF in hybrid or remote working environments. 

4.3.1 Direct Communication 

In recent years, Slack and Microsoft Teams have become popular collaboration 

platforms, replacing solutions such as enterprise instant messaging, desk phones, 

videotelephony, enterprise wikis, and forums. Microsoft Teams is especially wide-

spread in large enterprises due to its tight integration with the Microsoft Office suite 

and SharePoint.116 

In addition to enabling direct communication between individuals via chat, audio, 

or video, Microsoft Teams organizes group discussions in Teams and Channels. 

Each team consists of several channels that are either public to each team member 

or private. 

Collaboration platforms may easily create information-flooding and distraction for 

team members if they have not been properly introduced. To avoid such situations, 

agile teams should explicitly discuss and consent to usage practices for the collab-

oration platform. Some teams may prefer to use emojis and animated GIFs to add 

a personal note to written team discussions, whereas other teams may want to 

prohibit their usage to maintain a professional and more focused environment. 

The reference team at SAP has chosen to implement these lightweight practices: 

• Use of threads 
Threads add a contextual dimension to team chats. Instead of only having 

messages sorted by the time dimension, each message can be converted 

to a contextual thread by directly replying to it. Threads enable multiple 

parallel written discussions within the same team channel.  

• Concise use of mentions 
As multiple parallel team conversations will create an amount of information 

that is hard for individuals to digest, no team member shall be expected to 

keep up with each thread. If it is required that a certain individual or group 

 

116 refer to (European Commission, 2024) for a more controversial view on the integration 



Practical Implementation and Evaluation 64 

Mathias Kemeter 

reads a message, the author needs to explicitly tag this person or group. 

Tagging larger groups without good reason is unwelcome behavior. 

• Leverage OneDrive integration 
Microsoft Teams automatically offers file storage backed by Microsoft 

SharePoint and integrated into Microsoft OneDrive for Business. Each 

channel has its own storage, which the team may leverage as shared per-

sistence for documents. This integration replaces traditional shared folders 

on servers and increases the ease of collaboratively working on docu-

ments. 

• Actively manage channel visibility 
Full transparency across team activities may lead to many visible topic 

channels within a team. Each team member needs to consciously decide 

on the relevant channels and should take the time to hide irrelevant chan-

nels from their overview list. This helps focus on important information while 

keeping less relevant information available on demand. 

• Prefer messages over email 
The availability of collaboration platforms like Microsoft Teams, in conjunc-

tion with established communication channels like email, might hinder the 

user adoption of the former because the continued presence of email as a 

fallback option reduces the perceived necessity of transitioning to the new 

platform. The team explicitly agreed to favor direct or channel messages 

over email and to restrict the use of emails to team-external communica-

tion. 

With its integration into Microsoft Outlook and its calendar component in particular, 

Microsoft Teams is also used to schedule remote or hybrid meetings. The refer-

ence team chose to set up one channel per technical component and per 

workstream, as well as one organizational channel for the entire team. Meetings 

would be scheduled within the respective channels, depending on the required au-

dience. Recordings, notes, and chat messages that are part of the meeting would 

automatically be archived within the channel. Over time, this leads to a searchable 

team knowledge base that is transparent and accessible to each member. 



Practical Implementation and Evaluation 65 

Mathias Kemeter 

4.3.2 Whiteboarding 

Especially for open team discussions, as it frequently happens during the concep-

tualization phase, and for discussions on continuous improvements, a digital white-

boarding solution is required to capture the ideas and motions created by the team. 

Various solutions are available, with Mural, Miro, and Microsoft Whiteboard being 

three of the more popular ones. An exemplary whiteboard in the software Mural by 

vendor Tactivos can be seen in Figure 27. 

 

Figure 27: Digital whiteboards like Mural facilitate vibrant virtual team discussions117 

Digital whiteboards are a one-to-one substitute for physical whiteboards and sticky 

notes in collocated work environments. The vendors and respective user commu-

nities typically provide a variety of preconfigured templates for different meeting 

types. Agile development templates such as whiteboards for retrospective meet-

ings can be re-used for WDF. 

Using preconfigured whiteboards requires thorough preparation to learn how to 

use the template or set up the preconfiguration by hand. While this is appropriate 

for formal meetings with a clear agenda, the potential of digital whiteboards should 

 

117 taken from (Tactivos, Inc., 2024) 



Practical Implementation and Evaluation 66 

Mathias Kemeter 

also be leveraged for ad-hoc discussions. Ideally, opening a digital whiteboard dur-

ing a team discussion should be as seamless as picking up a pen and starting to 

draw in a physical meeting. From a technical perspective, the barrier of opening a 

blank whiteboard can be lowered by setting up a folder (i.e., “Room” in software 

Mural) with full access for each team member. The link to this folder will be listed 

as part of the knowledge base within the primary collaboration platform. 

Exemplary outputs of whiteboarding sessions during the conceptualization of WDF 

can be seen in Figure 23, Figure 24, and Figure 30. 

4.3.3 Task Management 

Whether working remotely or in collocation, many teams choose to use a digital 

project and task management system, with Jira by vendor Atlassian being a prom-

inent option. As Jira supports agile project management within the Kanban meth-

odology, it is also suitable for WDF.  

For WDF, it is recommended to set up a hierarchy of items divided into epics, user 

stories, and tasks. In analogy to the hierarchy introduced in Subsection 3.2.2, epics 

correspond to workstreams, and each epic holds several user stories, which again 

contain several tasks. Technical components, as a second planning dimension, 

are covered by the default field component. Using those default fields enables the 

team to use the default Kanban reporting, as seen in Figure 9, without setting up 

tracking indicators manually. Furthermore, the team benefits from the default plan-

ning perspective, which is split into epics and, subsequently, workstreams. With 

this planning perspective, the backlog can be viewed and prioritized across 

workstreams and for each individual workstream. 



Practical Implementation and Evaluation 67 

Mathias Kemeter 

 

Figure 28: Kanban board incorporating process steps, workstreams, and technical compo-
nents 

The built-in Kanban board should be used to track daily progress on task level. The 

individual process steps should be defined based on the team’s requirements. The 

reference team agreed to use horizontal “swimlanes” to differentiate between 

workstreams and to create columns for each of their relevant development steps: 

• Planned: Planned tasks that are ready to be picked up by developers dur-

ing the iteration 

• In progress: Tasks that are currently assigned and under active develop-

ment. 

• Under review: Functionally finished tasks that undergo the peer review 

process. 

• Merge pending: Coding that has been submitted to the repository and is 

undergoing the organization’s continuous integration process. 

• Done: Finished tasks that will be delivered with the next release. 

The status planned flags the transition of an item between the general backlog and 

the iteration backlog. Figure 29 shows the planning perspective, where items can 

be pulled from the general backlog into the planned status. The respective items 



Practical Implementation and Evaluation 68 

Mathias Kemeter 

subsequently appear in the planned column of the Kanban board, as shown in 

Figure 28. 

 

Figure 29: Schematic representation of the default planning perspective in Jira 

4.3.4 Scheduling 

For scheduling regular meetings and establishing the meeting structure introduced 

in Subsection 3.2.4, it is beneficial to create a shared team calendar and a shared 

team inbox for external communication via email. One of the primary email tech-

nologies in corporate environments is Microsoft Outlook, which allows the setup of 

shared mailboxes with a shared calendar by default. Giving all team members ac-

cess to the shared account enables central and transparent planning of meetings. 

Only the relevant audience is invited to each meeting, but everyone within the team 

has on-demand access to get an overview of current team activity.  

The exemplary structure of a shared team calendar can be seen in Figure 20. In 

this example, workstream-related meetings, such as the daily circle, are sent out 

without a direct link to the meeting itself. Instead, the workstream members use 

their communication channel in Microsoft Teams to join the meeting. This approach 

avoids organizational friction and overhead for adjusting recipients of meeting re-

quests when team members change their workstreams between iterations. 



Practical Implementation and Evaluation 69 

Mathias Kemeter 

As a best practice and to enable effective scheduling within large groups, the team 

may agree to also make their personal calendars, except for private appointments, 

accessible to the group. This process adds transparency and helps resolve meet-

ing conflicts before they appear. 

4.4 Analysis of Outcomes 
Like many other corporate companies, SAP conducts regular employee surveys. 

The anonymous results of those surveys are given to the teams for internal discus-

sions on measures that need to be taken. Roughly six months after the reference 

team of twenty developers adopted WDF, the team has been asked two questions 

as part of the internal discussion of the regular survey results: 

1. Mainly thinking of your experiences within the team, is there something that 

made you particularly proud, happy, or engaged in the last months? 

2. Mainly thinking of your experiences within the team, is there something that 

particularly pulled you down or held you back in the last months? 

These questions were not specifically targeted toward the development process 

but were meant to capture the team situation in general. For this reason, most of 

the answers touched on general topics. Figure 30 shows answers filtered accord-

ing to their relevance for assessing the development framework. Based on this 

anonymous feedback, this section summarizes the main successes and chal-

lenges the team experienced within this six-month period. 



Practical Implementation and Evaluation 70 

Mathias Kemeter 

 

Figure 30: Results of the whiteboarding session on an employee survey filtered for com-
ments that may refer to WDF (actual screenshot) 

4.4.1 Successes During Implementation 

The whiteboarding results in Figure 30 indicate that the team could realize some 

benefits of the new development framework after running it for six months. Some 

of the main successes that the team members highlighted are: 

• Process unification 
The team experienced benefits immediately after taking the first transitional 

step of establishing a joint development framework, as outlined in Section 

4.2. The process unification and shared Jira instance led to less adminis-

trative overhead for maintaining the team’s tasks and communicating pro-

gress to team-external stakeholders. From an operational perspective, the 

shared task management and planning process presented the opportunity 

to reduce redundancy and centralize team-wide tasks. Examples are refac-

toring and quality initiatives that originate from the organization’s central 

quality team and affect each development team. Historically, one individual 

per microteam needed to assess the impact on the jointly owned codebase 

and implement the resulting code changes. In the new setup, the process 

and shared ownership allows for centrally assigning one developer to take 



Practical Implementation and Evaluation 71 

Mathias Kemeter 

care of the initiative’s effects for the entire team, covering all technical com-

ponents. 

Another aspect to consider is the positive impact of process unification on 

the onboarding of new employees or temporary staff like students or in-

terns: The transparency on the overall team goals and progress made it 

possible to centralize onboarding activities while the pool of developers, 

who have the capacity and motivation to mentor new employees, increased 

and was not restricted to the respective microteams. The overall onboard-

ing experience and efficiency increased, and temporary staff in particular 

could easily be routed to the most urgent workstream instead of acting in 

silos with unbalanced staffing. 

• Increased focus and faster progress 
Developers enjoyed the increased focus on development topics and the 

reduced distraction due to context switches. It was also appreciated that 

teaming up on topics with at least three developers led to more constructive 

and in-depth discussions, which effectively increased the quality of the out-

put. By focusing on the major workstreams and limiting the scope of indi-

vidual developers to their assigned workstreams, the team was able to 

close off two large unfavorable projects with a previous lifetime of two and 

five years within the first six to nine months after implementation of the 

framework. 

• Broader variety of topics 
The ability to participate in workstreams beyond their historical scope of 

work was positively received by several team members. After the imple-

mentation of the framework, some team members permanently changed 

their scope of work based on staffing requirements and personal interest, 

while others made use of more frequent team-internal craftsman swaps by 

changing workstreams at the end of an iteration. This situation led to an 

overall increased knowledge exchange, consequently making the team 

more resilient to changing requirements. 



Practical Implementation and Evaluation 72 

Mathias Kemeter 

In addition to the sentiments expressed, as seen in Figure 30, the team was able 

to drive the development of two additional technical components. Due to the con-

cept of workstreams, the onboarding of new topics was a non-disruptive experi-

ence, as these components were initiated as a workstream staffed with developers 

with the right skillsets and motivated by contributing to the overall team’s success 

and visibility within the wider organization. 

4.4.2 Challenges During Implementation 

While the introduction of WDF brought many benefits to the team, it also posed 

challenges during and after the implementation phase. Some of these challenges 

from a team member’s perspective are listed below: 

• Less variety of topics 
Some team members reported dissatisfaction that the variety of topics they 

worked on was reduced after adopting WDF. This view, which must be 

judged against the background of the team member’s initial situation, does 

not necessarily contradict the opposing statement in Subsection 4.4.1. 

While some team members enjoy the opportunity to engage with 

workstreams far beyond their historical scope of work, others may feel re-

stricted by being unable to take on additional work outside the scope of 

their workstream during the course of an iteration. What appears to be a 

downside for them, helps the overall team stay focused on large, unfavor-

able topics and avoid procrastination effects, as described in Subsection 

3.3.3. A countermeasure for increasing the motivation of affected team 

members is to clearly communicate the value of their work to the success 

of the team and to motivate them to use retrospective meetings for discuss-

ing their individual situation and finding a solution within the sovereignty of 

the team. 

• Less information outside of own workstream 
In Subsection 3.2.5.1, it was emphasized that one of the goals of WDF is 

to provide a high level of transparency regarding ongoing topics amongst 

the team. At the same time, with WDF, the team transitions from three mi-

croteams to five or six workstream units, which results in some people not 



Practical Implementation and Evaluation 73 

Mathias Kemeter 

participating in certain topic discussions as much as they used to. While 

this enables quick decision-making and keeps detailed discussions effi-

cient, which is appreciated by others, it is vital that regular review meetings 

are leveraged to summarize the most important discussions and findings 

and provide the right level of transparency to the team. The recommenda-

tions given in Subsection 3.2.5.1 are an iterative improvement that is a di-

rect outcome of the feedback given as part of the employee survey. 

• Unfocused workstreams 
Workstreams, as defined in Subsection 3.2.1, are not necessarily projects 

with a fixed timeline and definition of done. A workstream may have a du-

ration between six months and multiple years. Towards the end of the life-

time of a workstream, it may still require work to be done, but with fewer 

resources involved. If there is not enough work to occupy at least three 

developers, it ideally needs to be paused until enough work piles up, or, as 

a second option, it needs to be merged with other workstreams facing sim-

ilar challenges. Finding a common goal and vision for the merged 

workstream is challenging in this situation. Team members working in these 

merged workstreams with less focus on a common goal report lower satis-

faction with the process than those working towards a common goal. The 

severity of this effect depends on the development team’s individual envi-

ronment. 

• Tension between component and workstream assignment 
Multi-dimensional planning incorporating workstreams and technical com-

ponents was difficult for individuals to digest at the beginning of framework 

adoption. The work split between the workstreams and the maintenance 

responsibilities on the component level created tension as some team 

members avoided the required maintenance portion. The most visible effect 

of this tension was an increased bug backlog. Consequently, the team de-

cided to use agenda templates for the regular component circles to avoid 

missing out on important discussions and to ensure the clear assignment 

of bugs to developers. 



Practical Implementation and Evaluation 74 

Mathias Kemeter 

To summarize, individual and team challenges need to be differentiated. Individual 

challenges are sometimes caused by framework artifacts that provide value to the 

overall team. Given a solid base of trust among team members, the framework 

provides the flexibility to discuss and tackle these challenges as part of the iterative 

improvement process. The bi-weekly retrospective meeting acts as a team-internal 

safe space to address these challenges. 



Discussion 75 

Mathias Kemeter 

5. Discussion 
After proposing a novel approach to software development, the Workstream-based 

Development Framework (WDF), in Chapter 3 and summarizing the experience of 

the prototypical implementation in Chapter 4, this chapter links back to the agile 

development frameworks introduced in Chapter 2. The discussion concludes with 

a summary of known limitations and potential future improvements for WDF. 

5.1 Comparison with Existing Agile Frameworks 
The development framework introduced in this work adopts practices and artifacts 

from existing frameworks like Scrum, Kanban, or Scrumban. However, it also in-

cludes unique concepts such as the matrix organization of work by workstreams 

and technical components. 

Like Boeg’s statement that “none of the principles of Kanban restrict you from doing 

Scrum,”118 the proposed framework can be embedded into the Kanban methodol-

ogy. Due to its embedding, teams have the visualization and process health meas-

urements of Kanban at their disposal. However, WDF does not explicitly limit work 

in progress, which is a central element of Kanban implementations.119 By restricting 

developers to focus on a single workstream, the framework reduces parallelization, 

which is an indirect measure to limit the work in progress. This approach corre-

sponds to setting multi-tasking limits as a transitional step in Scrumban.120 

Additional factors suggest that WDF may be similar to Scrumban: WDF also lever-

ages late binding of tasks121 and does not consider estimations. The team at SAP 

used the status planned for development tasks that are ready to be consumed 

during an iteration, which essentially is the same concept as the ready queue in 

Scrumban. However, unlike the Scrumban approach, WDF does not introduce fur-

ther inter-process buffers and does not mandate, but also does not prohibit, defin-

ing work standards for the team’s process steps.  

 

118 (Boeg, 2012, p. 17) 
119 see Subsection 2.2.2 
120 see Subsection 2.2.3  
121 see Subsection 3.2.3.3 



Discussion 76 

Mathias Kemeter 

Beyond the scope of Scrumban, which is founded on agile principles, WDF adds a 

strong notion of the Software Craftsmanship principles to the development pro-

cess. With its perspective on the team as a self-responsible collective of entrepre-

neurial software professionals and its ongoing encouragement of team-internal 

craftsman swaps, WDF appears as an evolution of Scrumban into the Software 

Craftsmanship movement. As Ladas describes Scrumban as a transition strategy 

rather than a framework,122 WDF can be seen as a continuation of those ideas 

rather than an alternative or contradiction.  

Another key point is how WDF relates to the most commonly implemented agile 

framework, Scrum. WDF specifically addresses two points of criticism of Scrum 

highlighted in Section 2.3: 

1. The missing comprehension of enterprise realities123 

2. The meeting overhead commonly experienced by developers124 

The proposed framework was inspired by the perceived enterprise reality of in-

creased team sizes and the merger of teams due to corporate guidelines.125 With 

the framework’s unique concept of workstreams, the practicing teams may re-

balance staffing non-disruptively, which relaxes the strict assumption of stable 

teams on a micro level. 

Due to the costly training and certification process of a Scrum Master, certified 

individuals tend to emphasize their knowledge of processes and the associated 

tooling within the Scrum framework,126 which creates a tension to the underlying 

agile principle to value “individuals and interactions over processes and tools.”127 

WDF relaxes this tension by generally strengthening the role of developers in the 

development process and particularly prioritizing their critical view on the ratio be-

tween actual working time spent and the experienced overhead of meeting time 

and process orchestration. 

 

122 see Subsection 2.2.3 
123 see Figure 11 
124 see Figure 13 
125 see Section 3.1 
126 see Section 2.3 
127 see Subsection 2.1.2 



Discussion 77 

Mathias Kemeter 

 

Figure 31: Relative distribution of meeting and non-meeting times for WDF 

In analogy to Figure 13, the relative distribution of meeting and non-meeting time 

for WDF, based on the assumptions in Figure 19, can be seen in Figure 31. It is 

also assumed that backlog refinement consumes 5% of the iteration time. Since 

refinement happens primarily at the workstream level and user stories and devel-

opment tasks are refined at the operational level, the effort is expected to be on 

the lower end of Scrum’s estimation. 

While WDF suggests more meetings due to the different planning layers and di-

mensions, the overall meeting and process orchestration time has almost been cut 

by half compared to the classic Scrum approach. Overall, the proposed framework 

largely contradicts the strict interpretation of Scrum (Type A) while incorporating 

some of its more valuable practices, including retrospective meetings.  

WDF can also be seen as an approach to scaling agile development to a larger 

group, which in this case is a large team with diverse responsibilities. Taking this 

perspective, WDF can be compared with the scaling frameworks summarized in 

Subsection 2.2.4. Due to its small scale, the comparison to LeSS or Nexus is ex-

plicit. WDF shares the concept of working on a common backlog in synchronized 

iterations, which is a mandatory prerequisite for prioritizing work across separate 

topics or teams. However, it avoids the overhead of having an integration team, as 

88%

TIME SPENT IN WDF MEETINGS

Non-meeting time

Workstream Planning

Workstream Iteration Wrap-up

Iteration Review

Iteration Retro + Outlook

Workstream Circle

Component Circle

Backlog Refinement



Discussion 78 

Mathias Kemeter 

proposed by Nexus, by incorporating integration into the planning hierarchy. Unlike 

LeSS, WDF tries to make use traditional corporate roles, such as the Team Lead, 

instead of eliminating them, which is expected to increase its acceptance in large 

enterprises. 

Given its embedding in Kanban and similarities to Scrumban, WDF undeniably fol-

lows the lean-agile mindset and the associated principles. Chapter 4 demonstrated 

how its implementation harmonizes with New Work principles. Autonomy of the 

workplace and work time can be incorporated by proper use of collaboration tech-

nology, as described in Section 4.3. Figure 15 highlights self-organizing teams and 

an open culture of failure as common New Work artifacts, both of which are 

strongly encouraged by practicing WDF.  

Finally, the framework’s central aspect of collective decision-making and seeing 

developers as entrepreneurial craftsmen within their company is reflected by the 

New Work principles of “self-responsibility” and “development.” 

5.2 Limitations and Areas for Future Improvement 
The prototypical implementation illustrated in Chapter 4 has been successful be-

cause WDF has been conceptualized by the prototyping team who, subsequently, 

have tailormade the framework to their specific situation and challenges. As agile 

development methods are primarily based on empiricism,128 the generic usefulness 

of this novel approach cannot easily be predicted or extrapolated for other teams. 

Empiric follow-up research is required to determine whether the specific pain points 

WDF addresses are of general interest to other software development teams.  

The aspect of multi-dimensional planning adds a level of complexity that is not 

expected to be suitable for small teams in small development organizations. To 

realize the benefits and justify the increased complexity, the team should have 

ownership of more than two technical components. Assuming each technical com-

ponent pursues one or two major development themes, which require at least three 

developers, the minimum team size is 15 developers. For teams and organizations 

with more than 30 developers, the large-scale agile frameworks, as introduced in 

 

128 see Chapter 2  



Discussion 79 

Mathias Kemeter 

Subsection 2.2.4, are more capable of handling the operational complexity. This 

situation effectively limits the ideal team size for adopting WDF to ones with be-

tween 15 and 30 software developers responsible for up to five technical compo-

nents. 

WDF is a framework for breaking up technical silos—that is, moving away from 

technical component teams to ones with broader responsibilities and increased 

flexibility. To get to this state, the teams need an open failure culture and a high 

willingness to cooperate as prerequisites. This inherently corresponds to a gener-

ative team culture, as shown in Figure 2. With its emphasis on self-independent 

entrepreneurial teams, WDF is unsuitable for implementation in pathological or ex-

clusively bureaucratic organizational cultures, as neither the teams nor the organ-

izations have the surrounding conditions to realize its benefits. 

From a practical perspective, software developers are said to be fact-based think-

ers willing to collaborate if the collaboration solves an actual problem. A meaningful 

common vision for the team is a catalyst for collaboration. In the selection process 

for candidate teams implementing WDF, a focus should be placed on consolidating 

thematically aligned teams rather than arbitrary groupings within the organization. 

This approach fosters the potential for cross-component collaboration by leverag-

ing pre-existing synergies between teams contributing to similar non-technical de-

velopment themes. 

One of the insights derived in Subsection 4.4.2 was that developers’ satisfaction 

with WDF corresponds to the workstream they are part of. The satisfaction rate in 

focused and concise workstreams has typically been high, while the satisfaction in 

less focused workstreams has been rated lower. The combination of microteams 

according to their potential for technical cross-component work can mitigate this 

effect while not completely eliminating it. The existence of unfocused workstreams, 

where a common goal is hard to define, is the most evident working point for future 

improvements of WDF. 



Conclusion 80 

Mathias Kemeter 

6. Conclusion 
Large software corporations adopt agile development frameworks to act on cus-

tomer requirements with agility while implementing lean processes for improved 

margins. On the team level, developers’ agile self-conception may contradict the 

management team’s more lean-oriented thinking. The Workstream-based Devel-

opment Framework (WDF) relaxes this tension by better embedding the develop-

ers’ perspective into lean and margin-oriented management principles at the cor-

porate level. In addition to the lean and agile principles, the framework makes ref-

erence to the principles of New Work and Software Craftsmanship to increase em-

ployee satisfaction and intrinsic product quality—both of which have increased rel-

evance for sustainably developing and operating cloud software. 

As with other agile frameworks and methodologies, WDF is based on experience 

and has been proven to work for at least one professional software development 

team at one point in time. It is not necessarily given that the same framework will 

work for other teams, nor is it guaranteed to work for the same team in the future. 

However, based on the fundamentals introduced in Chapter 2, it can be expected 

that the framework’s mechanisms, such as multi-dimensional planning and fre-

quent craftsman swaps, provide value to a broader community of software devel-

opment experts. 

The preconditions for implementing WDF, as outlined in Section 5.2, effectively 

limit the framework’s scope to large teams of between 15 and 30 developers re-

sponsible for two to five technical components. The framework’s success is en-

couraged by a generative company culture and a common product vision across 

the team, which prevents the existence of unfocused workstreams, which have 

been identified as the main diminisher of individual motivation. The detailed arti-

facts of WDF were extensively described in Chapter 3 and briefly summarized in 

Section 3.4. 

If WDF were a product, its customers would be software developers, company 

management, and agile practitioners within companies. Figure 32 shows the main 

aspects and insights discussed in this thesis transferred into a Business Model 

Canvas. 



Conclusion 81 

Mathias Kemeter 

 

Figure 32: Business Model Canvas, assuming WDF as a product 

The company management team, customers, development teams, and especially 

their Generation Y and Generation Z employees are affected by the introduction of 

WDF. From a management perspective, the expected improvement in reporting 

and progress measurement is appealing, whereas developers may benefit from 

increased autonomy and internal recognition due to visible and exposed roles, 

such as Workstream Lead, within the development process. 

On the technical side, an effective framework implementation in a hybrid work en-

vironment requires proper mobile hardware and the respective software licenses 

for digital collaboration software, such as communication platforms, whiteboarding 

software, ticketing systems, and more. Thus, collaboration technology is one of the 

cost drivers next to the costs associated with change management and the people 

transition process. 

The financial gain directly or indirectly caused by the new development process is 

expected to exceed its cost structure. Contributing factors are increased work 

throughput, decreased redundancy amongst the teams, and an optimized balance 

of available human resources according to business priorities. 



Conclusion 82 

Mathias Kemeter 

Compared to other agile frameworks, WDF provides value by unifying processes 

across large teams and establishing a culture of transparency and ongoing 

knowledge sharing. The focused and people-centric approach is expected to in-

crease teams’ flexibility and resilience and make them capable of effectively man-

aging a broader variety of topics. 

In his “Remarks on the Original Scrumban Essay,” Ladas states that “Scrumban 

was never intended to be a defined, prescriptive process” but a “demonstration of 

a way of thinking about cooperative knowledge work.”129 As a close relative of 

Scrumban, as per Section 5.1, the same may be true of WDF. Depending on the 

level of future external adoption, WDF may retrospectively be categorized as a 

demonstration of applying agile principles or as a defined framework for replication 

across several teams and companies. 

Irrespective of the actual outcome, the external adoption, and the future use of 

WDF, the team at SAP benefited from the explicit team discussions on the devel-

opment process. From this perspective, it can be concluded that the current frame-

work, at the very least, is a suitable intermediate step to a less wasteful process in 

the terminology of Kanban. 

 

129 (Ladas, 2021) 



Bibliography VII 

Mathias Kemeter 

Bibliography 

Almeida, F. & Espinheira, E., 2021. Large-Scale Agile Frameworks: A 

Comparative Review. Journal of Applied Sciences, Management and 

Engineering Technology, 2(1), pp. 16-29. 

Amazon Web Services, 2023. AWS Whitepaper: Introduction to DevOps on 

AWS, s.l.: Amazon Web Services, Inc.. 

American Psychological Association, 2006. Multitasking: Switching costs. [Online]  

Available at: https://www.apa.org/topics/research/multitasking 

[Accessed 14 July 2024]. 

Anderson, D. J., 2010. Kanban: Successful Evolutionary Change for Your 

Technology Business. Sequim: Blue Hole Press. 

Bach, T. et al., 2022. Testing Very Large Database Management Systems: The 

Case of SAP. Datenbank Spektrum, 2 June, pp. 195-215. 

Beck, K. et al., 2001. Manifesto for Agile Software Development. [Online]  

Available at: https://agilemanifesto.org/ 

[Accessed 14 July 2024]. 

Bergmann, F., 2004. Neue Arbeit, Neue Kultur. Freiamt: Arbor Verlag. 

Boeg, J., 2012. Priming Kanban - A 10 step guide to optimizing flow in your 

software development system. 2nd Edition ed. Aarhus: Trifork A/S. 

Bria, M., 2008. Craftsmanship - the Fifth Agile Manifesto Value?. [Online]  

Available at: https://www.infoq.com/news/2008/08/manifesto-fifth-

craftsmanship/ 

[Accessed 14 July 2024]. 

Cambridge Dictionary, 2024. Meaning of collective in English. [Online]  

Available at: https://dictionary.cambridge.org/dictionary/english/collective 

[Accessed 14 July 2024]. 

Conboy, K. & Carroll, N., 2019. Implementing Large-Scale Agile Frameworks: 

Challenges and Recommendations. IEEE Software, 36(2), pp. 44-50. 



Bibliography VIII 

Mathias Kemeter 

Dam, R. F. & Siang, T. Y., 2024. What is Design Thinking and Why Is It So 

Popular?. [Online]  

Available at: https://www.interaction-design.org/literature/article/what-is-

design-thinking-and-why-is-it-so-popular 

[Accessed 14 July 2024]. 

Diepstraten, M., 2022. The Role of Procrastination in Agile IT Projects. s.l., Open 

University of the Netherlands. 

Digital Template Market, 2020. Why Agile is important for Software Development. 

[Online]  

Available at: https://digitaltemplatemarket.com/agile-important-software-

development/ 

[Accessed 14 July 2024]. 

European Commission, 2024. Commission sends Statement of Objections to 

Microsoft over possibly abusive tying practices regarding Teams. [Online]  

Available at: 

https://ec.europa.eu/commission/presscorner/detail/en/ip_24_3446 

[Accessed 14 July 2024]. 

Fath, R., 2018. Unsplash. [Online]  

Available at: https://unsplash.com/photos/people-building-structure-during-

daytime-ymf4_9Y9S_A 

[Accessed 14 July 2024]. 

Grass, A., Backmann, J. & Hoegl, M., 2021. Research Project: Success Factors 

for Agile Team Collaboration. Munich, Institute for Leadership and 

Organization, LMU Munich. 

Hewlett Packard Enterprise, 2017. Agile is the new normal: Adopting Agile project 

management, s.l.: Hewlett Packard Enterprise Development LP. 

Humble, J., Molesky, J. & O'Reilly, B., 2020. Lean Enterprise - How High 

Performance Organizations Innovate at Scale. First Release ed. Sebastopol: 

O'Reilly Media, Inc.. 



Bibliography IX 

Mathias Kemeter 

Koch, J., Drazic, I. & Schermuly, C. C., 2023. The affective, behavioural and 

cognitive outcomes of agile project management: A preliminary meta-analysis. 

Journal of Occupational and Organizational Psychology, 22 February, 96(3), 

pp. 678-706. 

Ladas, C., 2008. Scrumban - Essays on Kanban Systems for Lean Software 

Development. Seattle: Modus Cooperandi Press. 

Ladas, C., 2021. Remarks on the Original Scrumban Essay. [Online]  

Available at: https://www.agilealliance.org/remarks-on-the-original-scrumban-

essay/ 

[Accessed 14 July 2024]. 

Leffingwell, D., 2023. Say Hello to SAFe 6.0!. [Online]  

Available at: https://scaledagileframework.com/blog/say-hello-to-safe-6-0/ 

[Accessed 14 July 2024]. 

Liker, J. K., 2003. The Toyota Way: 14 Management Principles from the World's 

Greatest Manufacturer. Reissue Edition ed. New York: McGraw-Hill 

Professional. 

Lucena, P. & Tizzei, L. P., 2016. Applying Software Craftsmanship Practices to a 

Scrum Project: an Experience Report. arXiv.org, 17 November.  

Oppermann, A., 2023. What Is the V-Model in Software Development?. [Online]  

Available at: https://builtin.com/software-engineering-perspectives/v-model 

[Accessed 14 July 2024]. 

Quino Al, 2017. Unsplash. [Online]  

Available at: https://unsplash.com/photos/grayscale-photography-of-men-

playing-rugby-on-muddy-land-ce79TRf3Fyw 

[Accessed 14 July 2024]. 

Rauch, N., 2016. Craftsman Swap and Journeyman Tour. [Online]  

Available at: https://www.nicole-rauch.de/posts/2016-08-29-craftsman-swap-

and-journeyman-tour.html 

[Accessed 14 July 2024]. 



Bibliography X 

Mathias Kemeter 

Scaled Agile, Inc., 2024. Lean-Agile Mindset. [Online]  

Available at: https://scaledagileframework.com/lean-agile-mindset/ 

[Accessed 14 July 2024]. 

Schell, V., 2019. Agile Skalierungsframeworks: Safe, Less und Nexus im 

Vergleich. [Online]  

Available at: https://t3n.de/news/agile-skalierungsframeworks-safe-less-nexus-

1150190/ 

[Accessed 14 July 2024]. 

Schermuly, C. C. & Meifert, M., 2022a. Auf dem Weg ins postagile Zeitalter?. 

Personalmagazin, September, pp. 24-30. 

Schermuly, C. C. & Meifert, M., 2022b. Ergebnisbericht zum New Work-

Barometer, Berlin: SRH Berlin University of Applied Sciences. 

Schwaber, K. & Sutherland, J., 2020. The Scrum Guide. [Online]  

Available at: https://scrumguides.org/ 

[Accessed 14 July 2024]. 

Scrum.org, 2024. What is Scrum?. [Online]  

Available at: https://www.scrum.org/resources/what-scrum-module 

[Accessed 14 July 2024]. 

Scrum.org, 2024. What is ScrumBut?. [Online]  

Available at: https://www.scrum.org/resources/what-scrumbut 

[Accessed 14 July 2024]. 

Shaffer, C. A. & Kazerouni, A. M., 2021. The Impact of Programming Project 

Milestones on Procrastination, Project Outcomes, and Course Outcomes: A 

Quasi-Experimental Study in a Third-Year Data Structures Course. SIGCSE 

'21: Proceedings of the 52nd ACM Technical Symposium on Computer 

Science Education, pp. 907-913. 

Statista, 2024. Number of software developers worldwide in 2018 to 2024. 

[Online]  

Available at: https://www.statista.com/statistics/627312/worldwide-developer-



Bibliography XI 

Mathias Kemeter 

population/ 

[Accessed 14 July 2024]. 

Sutherland, J., 2005. Scrum II: Better, Faster, Cooler!, s.l.: s.n. 

Sutherland, J., 2010. Scrum Handbook. Somerville: Scrum Training Institute. 

Tactivos, Inc., 2024. Mural - Visual collaboration made easy. [Online]  

Available at: https://www.mural.co/features 

[Accessed 14 July 2024]. 

the undersigned, 2009. [Online]  

Available at: https://manifesto.softwarecraftsmanship.org/ 

[Accessed 14 July 2024]. 

Tregubov, A., Boehm, B., Rodchenko, N. & Lane, J. A., 2017. Impact of Task 

Switching and Work Interruptions on Software Development Processes. 

ICSSP 2017: Proceedings of the 2017 International Conference on Software 

and System Process, July.pp. 134-138. 

Väth, M., Soballa, A. & Gstöttner, A., 2019. New Work Charta. [Online]  

Available at: https://humanfy.de/new-work-charta/ 

[Accessed 14 July 2024]. 

Waworuntu, E. C., Kainde, S. J. R. & Mandagi, D. W., 2022. Work-Life Balance, 

Job Satisfaction and Performance Among Millennial and Gen Z Employees: A 

Systematic Review. Society, 10(2), pp. 286-300. 

Westrum, R., 2005. A Typology of Organisational Cultures. Quality & safety in 

health care, January, pp. ii22-ii27. 

Womack, J. P. & Jones, D. T., 2003. Lean Thinking: Banish Waste and Create 

Wealth in Your Corporation. 2. ed. New York: Free Press, Simon & Schuster 

Inc.. 

Wong, W., 2009. Employee swap gives two firms new perspectives. Ventura 

County Star, 13 July.  



Bibliography XII 

Mathias Kemeter 

World Rugby Limited, 2024. World Rugby - The scrum. [Online]  

Available at: https://www.world.rugby/the-game/beginners-guide/scrum 

[Accessed 14 July 2024]. 

 



Declaration of Authenticity XIII 

Mathias Kemeter 

Declaration of Authenticity 
I declare that I completed the master’s thesis independently and used only the 

materials that are listed. All materials used, from published as well as unpublished 

sources, whether directly quoted or paraphrased, are duly reported. 

Furthermore, I declare that the master’s thesis, or any abridgement of it, was not 

used for any other degree-seeking purpose. 

 

 

Germersheim, 17 July 2024 

 

Place, Time Signature 

 

 

 


